(Feat) add `"/v1/batches/{batch_id:path}/cancel" endpoint (#7406)

* use 1 file for azure batches handling

* add cancel_batch endpoint

* add a cancel batch on open ai

* add cancel_batch endpoint

* add cancel batches to test

* remove unused imports

* test_batches_operations

* update test_batches_operations
This commit is contained in:
Ishaan Jaff 2024-12-24 20:23:50 -08:00 committed by GitHub
parent 440009fb32
commit 54cb64d03d
7 changed files with 589 additions and 304 deletions

View file

@ -11,7 +11,11 @@ from fastapi import APIRouter, Depends, HTTPException, Path, Request, Response
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.batches.main import CreateBatchRequest, RetrieveBatchRequest
from litellm.batches.main import (
CancelBatchRequest,
CreateBatchRequest,
RetrieveBatchRequest,
)
from litellm.proxy._types import *
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body
@ -353,6 +357,116 @@ async def list_batches(
raise handle_exception_on_proxy(e)
@router.post(
"/{provider}/v1/batches/{batch_id:path}/cancel",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
@router.post(
"/v1/batches/{batch_id:path}/cancel",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
@router.post(
"/batches/{batch_id:path}/cancel",
dependencies=[Depends(user_api_key_auth)],
tags=["batch"],
)
async def cancel_batch(
request: Request,
batch_id: str,
fastapi_response: Response,
provider: Optional[str] = None,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
Cancel a batch.
This is the equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/cancel
Example Curl
```
curl http://localhost:4000/v1/batches/batch_abc123/cancel \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-X POST
```
"""
from litellm.proxy.proxy_server import (
add_litellm_data_to_request,
general_settings,
get_custom_headers,
proxy_config,
proxy_logging_obj,
version,
)
data: Dict = {}
try:
data = await _read_request_body(request=request)
verbose_proxy_logger.debug(
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
)
# Include original request and headers in the data
data = await add_litellm_data_to_request(
data=data,
request=request,
general_settings=general_settings,
user_api_key_dict=user_api_key_dict,
version=version,
proxy_config=proxy_config,
)
custom_llm_provider = (
provider or data.pop("custom_llm_provider", None) or "openai"
)
_cancel_batch_data = CancelBatchRequest(batch_id=batch_id, **data)
response = await litellm.acancel_batch(
custom_llm_provider=custom_llm_provider, # type: ignore
**_cancel_batch_data
)
### ALERTING ###
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
### RESPONSE HEADERS ###
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
fastapi_response.headers.update(
get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
request_data=data,
)
)
return response
except Exception as e:
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format(
str(e)
)
)
raise handle_exception_on_proxy(e)
######################################################################
# END OF /v1/batches Endpoints Implementation