mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
(Feat) add `"/v1/batches/{batch_id:path}/cancel" endpoint (#7406)
* use 1 file for azure batches handling * add cancel_batch endpoint * add a cancel batch on open ai * add cancel_batch endpoint * add cancel batches to test * remove unused imports * test_batches_operations * update test_batches_operations
This commit is contained in:
parent
440009fb32
commit
54cb64d03d
7 changed files with 589 additions and 304 deletions
|
@ -20,11 +20,16 @@ import httpx
|
|||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.llms.azure.azure import AzureBatchesAPI
|
||||
from litellm.llms.azure.batches.handler import AzureBatchesAPI
|
||||
from litellm.llms.openai.openai import OpenAIBatchesAPI
|
||||
from litellm.llms.vertex_ai.batches.handler import VertexAIBatchPrediction
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
from litellm.types.llms.openai import Batch, CreateBatchRequest, RetrieveBatchRequest
|
||||
from litellm.types.llms.openai import (
|
||||
Batch,
|
||||
CancelBatchRequest,
|
||||
CreateBatchRequest,
|
||||
RetrieveBatchRequest,
|
||||
)
|
||||
from litellm.types.router import GenericLiteLLMParams
|
||||
from litellm.utils import client, get_litellm_params, supports_httpx_timeout
|
||||
|
||||
|
@ -582,9 +587,163 @@ def list_batches(
|
|||
raise e
|
||||
|
||||
|
||||
def cancel_batch():
|
||||
pass
|
||||
async def acancel_batch(
|
||||
batch_id: str,
|
||||
custom_llm_provider: Literal["openai", "azure"] = "openai",
|
||||
metadata: Optional[Dict[str, str]] = None,
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
) -> Batch:
|
||||
"""
|
||||
Async: Cancels a batch.
|
||||
|
||||
LiteLLM Equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel
|
||||
"""
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
kwargs["acancel_batch"] = True
|
||||
|
||||
# Use a partial function to pass your keyword arguments
|
||||
func = partial(
|
||||
cancel_batch,
|
||||
batch_id,
|
||||
custom_llm_provider,
|
||||
metadata,
|
||||
extra_headers,
|
||||
extra_body,
|
||||
**kwargs,
|
||||
)
|
||||
# Add the context to the function
|
||||
ctx = contextvars.copy_context()
|
||||
func_with_context = partial(ctx.run, func)
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
if asyncio.iscoroutine(init_response):
|
||||
response = await init_response
|
||||
else:
|
||||
response = init_response
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
async def acancel_batch():
|
||||
pass
|
||||
def cancel_batch(
|
||||
batch_id: str,
|
||||
custom_llm_provider: Literal["openai", "azure"] = "openai",
|
||||
metadata: Optional[Dict[str, str]] = None,
|
||||
extra_headers: Optional[Dict[str, str]] = None,
|
||||
extra_body: Optional[Dict[str, str]] = None,
|
||||
**kwargs,
|
||||
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
|
||||
"""
|
||||
Cancels a batch.
|
||||
|
||||
LiteLLM Equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel
|
||||
"""
|
||||
try:
|
||||
optional_params = GenericLiteLLMParams(**kwargs)
|
||||
### TIMEOUT LOGIC ###
|
||||
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
||||
# set timeout for 10 minutes by default
|
||||
|
||||
if (
|
||||
timeout is not None
|
||||
and isinstance(timeout, httpx.Timeout)
|
||||
and supports_httpx_timeout(custom_llm_provider) is False
|
||||
):
|
||||
read_timeout = timeout.read or 600
|
||||
timeout = read_timeout # default 10 min timeout
|
||||
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
||||
timeout = float(timeout) # type: ignore
|
||||
elif timeout is None:
|
||||
timeout = 600.0
|
||||
|
||||
_cancel_batch_request = CancelBatchRequest(
|
||||
batch_id=batch_id,
|
||||
extra_headers=extra_headers,
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
_is_async = kwargs.pop("acancel_batch", False) is True
|
||||
api_base: Optional[str] = None
|
||||
if custom_llm_provider == "openai":
|
||||
api_base = (
|
||||
optional_params.api_base
|
||||
or litellm.api_base
|
||||
or os.getenv("OPENAI_API_BASE")
|
||||
or "https://api.openai.com/v1"
|
||||
)
|
||||
organization = (
|
||||
optional_params.organization
|
||||
or litellm.organization
|
||||
or os.getenv("OPENAI_ORGANIZATION", None)
|
||||
or None
|
||||
)
|
||||
api_key = (
|
||||
optional_params.api_key
|
||||
or litellm.api_key
|
||||
or litellm.openai_key
|
||||
or os.getenv("OPENAI_API_KEY")
|
||||
)
|
||||
|
||||
response = openai_batches_instance.cancel_batch(
|
||||
_is_async=_is_async,
|
||||
cancel_batch_data=_cancel_batch_request,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
organization=organization,
|
||||
timeout=timeout,
|
||||
max_retries=optional_params.max_retries,
|
||||
)
|
||||
elif custom_llm_provider == "azure":
|
||||
api_base = (
|
||||
optional_params.api_base
|
||||
or litellm.api_base
|
||||
or get_secret_str("AZURE_API_BASE")
|
||||
)
|
||||
api_version = (
|
||||
optional_params.api_version
|
||||
or litellm.api_version
|
||||
or get_secret_str("AZURE_API_VERSION")
|
||||
)
|
||||
|
||||
api_key = (
|
||||
optional_params.api_key
|
||||
or litellm.api_key
|
||||
or litellm.azure_key
|
||||
or get_secret_str("AZURE_OPENAI_API_KEY")
|
||||
or get_secret_str("AZURE_API_KEY")
|
||||
)
|
||||
|
||||
extra_body = optional_params.get("extra_body", {})
|
||||
if extra_body is not None:
|
||||
extra_body.pop("azure_ad_token", None)
|
||||
else:
|
||||
get_secret_str("AZURE_AD_TOKEN") # type: ignore
|
||||
|
||||
response = azure_batches_instance.cancel_batch(
|
||||
_is_async=_is_async,
|
||||
api_base=api_base,
|
||||
api_key=api_key,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
max_retries=optional_params.max_retries,
|
||||
cancel_batch_data=_cancel_batch_request,
|
||||
)
|
||||
else:
|
||||
raise litellm.exceptions.BadRequestError(
|
||||
message="LiteLLM doesn't support {} for 'cancel_batch'. Only 'openai' and 'azure' are supported.".format(
|
||||
custom_llm_provider
|
||||
),
|
||||
model="n/a",
|
||||
llm_provider=custom_llm_provider,
|
||||
response=httpx.Response(
|
||||
status_code=400,
|
||||
content="Unsupported provider",
|
||||
request=httpx.Request(method="cancel_batch", url="https://github.com/BerriAI/litellm"), # type: ignore
|
||||
),
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
|
|
@ -2,7 +2,7 @@ import asyncio
|
|||
import json
|
||||
import os
|
||||
import time
|
||||
from typing import Any, Callable, Coroutine, List, Literal, Optional, Union
|
||||
from typing import Any, Callable, List, Literal, Optional, Union
|
||||
|
||||
import httpx # type: ignore
|
||||
from openai import AsyncAzureOpenAI, AzureOpenAI
|
||||
|
@ -28,13 +28,7 @@ from litellm.utils import (
|
|||
modify_url,
|
||||
)
|
||||
|
||||
from ...types.llms.openai import (
|
||||
Batch,
|
||||
CancelBatchRequest,
|
||||
CreateBatchRequest,
|
||||
HttpxBinaryResponseContent,
|
||||
RetrieveBatchRequest,
|
||||
)
|
||||
from ...types.llms.openai import HttpxBinaryResponseContent
|
||||
from ..base import BaseLLM
|
||||
from .common_utils import AzureOpenAIError, process_azure_headers
|
||||
|
||||
|
@ -1613,216 +1607,3 @@ class AzureChatCompletion(BaseLLM):
|
|||
response["x-ms-region"] = completion.headers["x-ms-region"]
|
||||
|
||||
return response
|
||||
|
||||
|
||||
class AzureBatchesAPI(BaseLLM):
|
||||
"""
|
||||
Azure methods to support for batches
|
||||
- create_batch()
|
||||
- retrieve_batch()
|
||||
- cancel_batch()
|
||||
- list_batch()
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def get_azure_openai_client(
|
||||
self,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
api_version: Optional[str] = None,
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
_is_async: bool = False,
|
||||
) -> Optional[Union[AzureOpenAI, AsyncAzureOpenAI]]:
|
||||
received_args = locals()
|
||||
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None
|
||||
if client is None:
|
||||
data = {}
|
||||
for k, v in received_args.items():
|
||||
if k == "self" or k == "client" or k == "_is_async":
|
||||
pass
|
||||
elif k == "api_base" and v is not None:
|
||||
data["azure_endpoint"] = v
|
||||
elif v is not None:
|
||||
data[k] = v
|
||||
if "api_version" not in data:
|
||||
data["api_version"] = litellm.AZURE_DEFAULT_API_VERSION
|
||||
if _is_async is True:
|
||||
openai_client = AsyncAzureOpenAI(**data)
|
||||
else:
|
||||
openai_client = AzureOpenAI(**data) # type: ignore
|
||||
else:
|
||||
openai_client = client
|
||||
|
||||
return openai_client
|
||||
|
||||
async def acreate_batch(
|
||||
self,
|
||||
create_batch_data: CreateBatchRequest,
|
||||
azure_client: AsyncAzureOpenAI,
|
||||
) -> Batch:
|
||||
response = await azure_client.batches.create(**create_batch_data)
|
||||
return response
|
||||
|
||||
def create_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
create_batch_data: CreateBatchRequest,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
|
||||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||||
self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
timeout=timeout,
|
||||
api_version=api_version,
|
||||
max_retries=max_retries,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.acreate_batch( # type: ignore
|
||||
create_batch_data=create_batch_data, azure_client=azure_client
|
||||
)
|
||||
response = azure_client.batches.create(**create_batch_data)
|
||||
return response
|
||||
|
||||
async def aretrieve_batch(
|
||||
self,
|
||||
retrieve_batch_data: RetrieveBatchRequest,
|
||||
client: AsyncAzureOpenAI,
|
||||
) -> Batch:
|
||||
response = await client.batches.retrieve(**retrieve_batch_data)
|
||||
return response
|
||||
|
||||
def retrieve_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
retrieve_batch_data: RetrieveBatchRequest,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
client: Optional[AzureOpenAI] = None,
|
||||
):
|
||||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||||
self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.aretrieve_batch( # type: ignore
|
||||
retrieve_batch_data=retrieve_batch_data, client=azure_client
|
||||
)
|
||||
response = azure_client.batches.retrieve(**retrieve_batch_data)
|
||||
return response
|
||||
|
||||
def cancel_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
cancel_batch_data: CancelBatchRequest,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
organization: Optional[str],
|
||||
client: Optional[AzureOpenAI] = None,
|
||||
):
|
||||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||||
self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
response = azure_client.batches.cancel(**cancel_batch_data)
|
||||
return response
|
||||
|
||||
async def alist_batches(
|
||||
self,
|
||||
client: AsyncAzureOpenAI,
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
):
|
||||
response = await client.batches.list(after=after, limit=limit) # type: ignore
|
||||
return response
|
||||
|
||||
def list_batches(
|
||||
self,
|
||||
_is_async: bool,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
client: Optional[AzureOpenAI] = None,
|
||||
):
|
||||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||||
self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.alist_batches( # type: ignore
|
||||
client=azure_client, after=after, limit=limit
|
||||
)
|
||||
response = azure_client.batches.list(after=after, limit=limit) # type: ignore
|
||||
return response
|
||||
|
|
238
litellm/llms/azure/batches/handler.py
Normal file
238
litellm/llms/azure/batches/handler.py
Normal file
|
@ -0,0 +1,238 @@
|
|||
"""
|
||||
Azure Batches API Handler
|
||||
"""
|
||||
|
||||
from typing import Any, Coroutine, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.llms.azure.azure import AsyncAzureOpenAI, AzureOpenAI
|
||||
from litellm.types.llms.openai import (
|
||||
Batch,
|
||||
CancelBatchRequest,
|
||||
CreateBatchRequest,
|
||||
RetrieveBatchRequest,
|
||||
)
|
||||
|
||||
|
||||
class AzureBatchesAPI:
|
||||
"""
|
||||
Azure methods to support for batches
|
||||
- create_batch()
|
||||
- retrieve_batch()
|
||||
- cancel_batch()
|
||||
- list_batch()
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def get_azure_openai_client(
|
||||
self,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
api_version: Optional[str] = None,
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
_is_async: bool = False,
|
||||
) -> Optional[Union[AzureOpenAI, AsyncAzureOpenAI]]:
|
||||
received_args = locals()
|
||||
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None
|
||||
if client is None:
|
||||
data = {}
|
||||
for k, v in received_args.items():
|
||||
if k == "self" or k == "client" or k == "_is_async":
|
||||
pass
|
||||
elif k == "api_base" and v is not None:
|
||||
data["azure_endpoint"] = v
|
||||
elif v is not None:
|
||||
data[k] = v
|
||||
if "api_version" not in data:
|
||||
data["api_version"] = litellm.AZURE_DEFAULT_API_VERSION
|
||||
if _is_async is True:
|
||||
openai_client = AsyncAzureOpenAI(**data)
|
||||
else:
|
||||
openai_client = AzureOpenAI(**data) # type: ignore
|
||||
else:
|
||||
openai_client = client
|
||||
|
||||
return openai_client
|
||||
|
||||
async def acreate_batch(
|
||||
self,
|
||||
create_batch_data: CreateBatchRequest,
|
||||
azure_client: AsyncAzureOpenAI,
|
||||
) -> Batch:
|
||||
response = await azure_client.batches.create(**create_batch_data)
|
||||
return response
|
||||
|
||||
def create_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
create_batch_data: CreateBatchRequest,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||||
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
|
||||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||||
self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
timeout=timeout,
|
||||
api_version=api_version,
|
||||
max_retries=max_retries,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.acreate_batch( # type: ignore
|
||||
create_batch_data=create_batch_data, azure_client=azure_client
|
||||
)
|
||||
response = azure_client.batches.create(**create_batch_data)
|
||||
return response
|
||||
|
||||
async def aretrieve_batch(
|
||||
self,
|
||||
retrieve_batch_data: RetrieveBatchRequest,
|
||||
client: AsyncAzureOpenAI,
|
||||
) -> Batch:
|
||||
response = await client.batches.retrieve(**retrieve_batch_data)
|
||||
return response
|
||||
|
||||
def retrieve_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
retrieve_batch_data: RetrieveBatchRequest,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
client: Optional[AzureOpenAI] = None,
|
||||
):
|
||||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||||
self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.aretrieve_batch( # type: ignore
|
||||
retrieve_batch_data=retrieve_batch_data, client=azure_client
|
||||
)
|
||||
response = azure_client.batches.retrieve(**retrieve_batch_data)
|
||||
return response
|
||||
|
||||
async def acancel_batch(
|
||||
self,
|
||||
cancel_batch_data: CancelBatchRequest,
|
||||
client: AsyncAzureOpenAI,
|
||||
) -> Batch:
|
||||
response = await client.batches.cancel(**cancel_batch_data)
|
||||
return response
|
||||
|
||||
def cancel_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
cancel_batch_data: CancelBatchRequest,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
client: Optional[AzureOpenAI] = None,
|
||||
):
|
||||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||||
self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
api_version=api_version,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
response = azure_client.batches.cancel(**cancel_batch_data)
|
||||
return response
|
||||
|
||||
async def alist_batches(
|
||||
self,
|
||||
client: AsyncAzureOpenAI,
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
):
|
||||
response = await client.batches.list(after=after, limit=limit) # type: ignore
|
||||
return response
|
||||
|
||||
def list_batches(
|
||||
self,
|
||||
_is_async: bool,
|
||||
api_key: Optional[str],
|
||||
api_base: Optional[str],
|
||||
api_version: Optional[str],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
max_retries: Optional[int],
|
||||
after: Optional[str] = None,
|
||||
limit: Optional[int] = None,
|
||||
client: Optional[AzureOpenAI] = None,
|
||||
):
|
||||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||||
self.get_azure_openai_client(
|
||||
api_key=api_key,
|
||||
api_base=api_base,
|
||||
timeout=timeout,
|
||||
max_retries=max_retries,
|
||||
api_version=api_version,
|
||||
client=client,
|
||||
_is_async=_is_async,
|
||||
)
|
||||
)
|
||||
if azure_client is None:
|
||||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.alist_batches( # type: ignore
|
||||
client=azure_client, after=after, limit=limit
|
||||
)
|
||||
response = azure_client.batches.list(after=after, limit=limit) # type: ignore
|
||||
return response
|
|
@ -1799,6 +1799,15 @@ class OpenAIBatchesAPI(BaseLLM):
|
|||
response = openai_client.batches.retrieve(**retrieve_batch_data)
|
||||
return response
|
||||
|
||||
async def acancel_batch(
|
||||
self,
|
||||
cancel_batch_data: CancelBatchRequest,
|
||||
openai_client: AsyncOpenAI,
|
||||
) -> Batch:
|
||||
verbose_logger.debug("async cancelling batch, args= %s", cancel_batch_data)
|
||||
response = await openai_client.batches.cancel(**cancel_batch_data)
|
||||
return response
|
||||
|
||||
def cancel_batch(
|
||||
self,
|
||||
_is_async: bool,
|
||||
|
@ -1823,6 +1832,16 @@ class OpenAIBatchesAPI(BaseLLM):
|
|||
raise ValueError(
|
||||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||||
)
|
||||
|
||||
if _is_async is True:
|
||||
if not isinstance(openai_client, AsyncOpenAI):
|
||||
raise ValueError(
|
||||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||||
)
|
||||
return self.acancel_batch( # type: ignore
|
||||
cancel_batch_data=cancel_batch_data, openai_client=openai_client
|
||||
)
|
||||
|
||||
response = openai_client.batches.cancel(**cancel_batch_data)
|
||||
return response
|
||||
|
||||
|
|
|
@ -11,7 +11,11 @@ from fastapi import APIRouter, Depends, HTTPException, Path, Request, Response
|
|||
|
||||
import litellm
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.batches.main import CreateBatchRequest, RetrieveBatchRequest
|
||||
from litellm.batches.main import (
|
||||
CancelBatchRequest,
|
||||
CreateBatchRequest,
|
||||
RetrieveBatchRequest,
|
||||
)
|
||||
from litellm.proxy._types import *
|
||||
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
|
||||
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body
|
||||
|
@ -353,6 +357,116 @@ async def list_batches(
|
|||
raise handle_exception_on_proxy(e)
|
||||
|
||||
|
||||
@router.post(
|
||||
"/{provider}/v1/batches/{batch_id:path}/cancel",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.post(
|
||||
"/v1/batches/{batch_id:path}/cancel",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
@router.post(
|
||||
"/batches/{batch_id:path}/cancel",
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
tags=["batch"],
|
||||
)
|
||||
async def cancel_batch(
|
||||
request: Request,
|
||||
batch_id: str,
|
||||
fastapi_response: Response,
|
||||
provider: Optional[str] = None,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
Cancel a batch.
|
||||
This is the equivalent of POST https://api.openai.com/v1/batches/{batch_id}/cancel
|
||||
|
||||
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/cancel
|
||||
|
||||
Example Curl
|
||||
```
|
||||
curl http://localhost:4000/v1/batches/batch_abc123/cancel \
|
||||
-H "Authorization: Bearer sk-1234" \
|
||||
-H "Content-Type: application/json" \
|
||||
-X POST
|
||||
|
||||
```
|
||||
"""
|
||||
from litellm.proxy.proxy_server import (
|
||||
add_litellm_data_to_request,
|
||||
general_settings,
|
||||
get_custom_headers,
|
||||
proxy_config,
|
||||
proxy_logging_obj,
|
||||
version,
|
||||
)
|
||||
|
||||
data: Dict = {}
|
||||
try:
|
||||
data = await _read_request_body(request=request)
|
||||
verbose_proxy_logger.debug(
|
||||
"Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
|
||||
)
|
||||
|
||||
# Include original request and headers in the data
|
||||
data = await add_litellm_data_to_request(
|
||||
data=data,
|
||||
request=request,
|
||||
general_settings=general_settings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
version=version,
|
||||
proxy_config=proxy_config,
|
||||
)
|
||||
|
||||
custom_llm_provider = (
|
||||
provider or data.pop("custom_llm_provider", None) or "openai"
|
||||
)
|
||||
_cancel_batch_data = CancelBatchRequest(batch_id=batch_id, **data)
|
||||
response = await litellm.acancel_batch(
|
||||
custom_llm_provider=custom_llm_provider, # type: ignore
|
||||
**_cancel_batch_data
|
||||
)
|
||||
|
||||
### ALERTING ###
|
||||
asyncio.create_task(
|
||||
proxy_logging_obj.update_request_status(
|
||||
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
||||
)
|
||||
)
|
||||
|
||||
### RESPONSE HEADERS ###
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
|
||||
fastapi_response.headers.update(
|
||||
get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||
request_data=data,
|
||||
)
|
||||
)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
verbose_proxy_logger.exception(
|
||||
"litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
raise handle_exception_on_proxy(e)
|
||||
|
||||
|
||||
######################################################################
|
||||
|
||||
# END OF /v1/batches Endpoints Implementation
|
||||
|
|
|
@ -144,6 +144,13 @@ async def test_create_batch(provider):
|
|||
with open(result_file_name, "wb") as file:
|
||||
file.write(result)
|
||||
|
||||
# Cancel Batch
|
||||
cancel_batch_response = await litellm.acancel_batch(
|
||||
batch_id=create_batch_response.id,
|
||||
custom_llm_provider=provider,
|
||||
)
|
||||
print("cancel_batch_response=", cancel_batch_response)
|
||||
|
||||
pass
|
||||
|
||||
|
||||
|
@ -282,6 +289,13 @@ async def test_async_create_batch(provider):
|
|||
with open(result_file_name, "wb") as file:
|
||||
file.write(file_content.content)
|
||||
|
||||
# Cancel Batch
|
||||
cancel_batch_response = await litellm.acancel_batch(
|
||||
batch_id=create_batch_response.id,
|
||||
custom_llm_provider=provider,
|
||||
)
|
||||
print("cancel_batch_response=", cancel_batch_response)
|
||||
|
||||
|
||||
def cleanup_azure_files():
|
||||
"""
|
||||
|
@ -301,18 +315,6 @@ def cleanup_azure_files():
|
|||
assert delete_file_response.id == _file.id
|
||||
|
||||
|
||||
def test_retrieve_batch():
|
||||
pass
|
||||
|
||||
|
||||
def test_cancel_batch():
|
||||
pass
|
||||
|
||||
|
||||
def test_list_batch():
|
||||
pass
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_avertex_batch_prediction():
|
||||
load_vertex_ai_credentials()
|
||||
|
|
|
@ -14,85 +14,57 @@ import time
|
|||
BASE_URL = "http://localhost:4000" # Replace with your actual base URL
|
||||
API_KEY = "sk-1234" # Replace with your actual API key
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
async def create_batch(session, input_file_id, endpoint, completion_window):
|
||||
url = f"{BASE_URL}/v1/batches"
|
||||
headers = {"Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json"}
|
||||
payload = {
|
||||
"input_file_id": input_file_id,
|
||||
"endpoint": endpoint,
|
||||
"completion_window": completion_window,
|
||||
}
|
||||
|
||||
async with session.post(url, headers=headers, json=payload) as response:
|
||||
assert response.status == 200, f"Expected status 200, got {response.status}"
|
||||
result = await response.json()
|
||||
print(f"Batch creation successful. Batch ID: {result.get('id', 'N/A')}")
|
||||
return result
|
||||
|
||||
|
||||
async def get_batch_by_id(session, batch_id):
|
||||
url = f"{BASE_URL}/v1/batches/{batch_id}"
|
||||
headers = {"Authorization": f"Bearer {API_KEY}"}
|
||||
|
||||
async with session.get(url, headers=headers) as response:
|
||||
if response.status == 200:
|
||||
result = await response.json()
|
||||
return result
|
||||
else:
|
||||
print(f"Error: Failed to get batch. Status code: {response.status}")
|
||||
return None
|
||||
|
||||
|
||||
async def list_batches(session):
|
||||
url = f"{BASE_URL}/v1/batches"
|
||||
headers = {"Authorization": f"Bearer {API_KEY}"}
|
||||
|
||||
async with session.get(url, headers=headers) as response:
|
||||
if response.status == 200:
|
||||
result = await response.json()
|
||||
return result
|
||||
else:
|
||||
print(f"Error: Failed to get batch. Status code: {response.status}")
|
||||
return None
|
||||
client = OpenAI(base_url=BASE_URL, api_key=API_KEY)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_batches_operations():
|
||||
async with aiohttp.ClientSession() as session:
|
||||
# Test file upload and get file_id
|
||||
file_id = await upload_file(session, purpose="batch")
|
||||
|
||||
create_batch_response = await create_batch(
|
||||
session, file_id, "/v1/chat/completions", "24h"
|
||||
_current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
input_file_path = os.path.join(_current_dir, "input.jsonl")
|
||||
file_obj = client.files.create(
|
||||
file=open(input_file_path, "rb"),
|
||||
purpose="batch",
|
||||
)
|
||||
batch_id = create_batch_response.get("id")
|
||||
assert batch_id is not None
|
||||
|
||||
batch = client.batches.create(
|
||||
input_file_id=file_obj.id,
|
||||
endpoint="/v1/chat/completions",
|
||||
completion_window="24h",
|
||||
)
|
||||
|
||||
assert batch.id is not None
|
||||
|
||||
# Test get batch
|
||||
get_batch_response = await get_batch_by_id(session, batch_id)
|
||||
print("response from get batch", get_batch_response)
|
||||
_retrieved_batch = client.batches.retrieve(batch_id=batch.id)
|
||||
print("response from get batch", _retrieved_batch)
|
||||
|
||||
assert get_batch_response["id"] == batch_id
|
||||
assert get_batch_response["input_file_id"] == file_id
|
||||
assert _retrieved_batch.id == batch.id
|
||||
assert _retrieved_batch.input_file_id == file_obj.id
|
||||
|
||||
# test LIST Batches
|
||||
list_batch_response = await list_batches(session)
|
||||
print("response from list batch", list_batch_response)
|
||||
# Test list batches
|
||||
_list_batches = client.batches.list()
|
||||
print("response from list batches", _list_batches)
|
||||
|
||||
assert list_batch_response is not None
|
||||
assert len(list_batch_response["data"]) > 0
|
||||
assert _list_batches is not None
|
||||
assert len(_list_batches.data) > 0
|
||||
|
||||
element_0 = list_batch_response["data"][0]
|
||||
assert element_0["id"] is not None
|
||||
# Clean up
|
||||
# Test cancel batch
|
||||
_canceled_batch = client.batches.cancel(batch_id=batch.id)
|
||||
print("response from cancel batch", _canceled_batch)
|
||||
|
||||
# Test delete file
|
||||
await delete_file(session, file_id)
|
||||
assert _canceled_batch.status is not None
|
||||
assert (
|
||||
_canceled_batch.status == "cancelling" or _canceled_batch.status == "cancelled"
|
||||
)
|
||||
|
||||
# finally delete the file
|
||||
_deleted_file = client.files.delete(file_id=file_obj.id)
|
||||
print("response from delete file", _deleted_file)
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
client = OpenAI(base_url=BASE_URL, api_key=API_KEY)
|
||||
assert _deleted_file.deleted is True
|
||||
|
||||
|
||||
def create_batch_oai_sdk(filepath: str, custom_llm_provider: str) -> str:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue