mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
(security fix) - update base image for all docker images to python:3.13.1-slim
(#7388)
* update base image for all docker files * remove unused files * fix sec vuln
This commit is contained in:
parent
d883241b36
commit
564ecc728d
11 changed files with 5 additions and 328 deletions
|
@ -1,8 +1,8 @@
|
|||
# Base image for building
|
||||
ARG LITELLM_BUILD_IMAGE=python:3.11.8-slim
|
||||
ARG LITELLM_BUILD_IMAGE=python:3.13.1-slim
|
||||
|
||||
# Runtime image
|
||||
ARG LITELLM_RUNTIME_IMAGE=python:3.11.8-slim
|
||||
ARG LITELLM_RUNTIME_IMAGE=python:3.13.1-slim
|
||||
# Builder stage
|
||||
FROM $LITELLM_BUILD_IMAGE AS builder
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
# Base image for building
|
||||
ARG LITELLM_BUILD_IMAGE=python:3.11.8-slim
|
||||
ARG LITELLM_BUILD_IMAGE=python:3.13.1-slim
|
||||
|
||||
# Runtime image
|
||||
ARG LITELLM_RUNTIME_IMAGE=python:3.11.8-slim
|
||||
ARG LITELLM_RUNTIME_IMAGE=python:3.13.1-slim
|
||||
# Builder stage
|
||||
FROM $LITELLM_BUILD_IMAGE AS builder
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
# Use the specific Node.js v20.11.0 image
|
||||
FROM node:20.18.1
|
||||
FROM node:20.18.1-alpine3.20
|
||||
|
||||
# Set the working directory inside the container
|
||||
WORKDIR /app
|
||||
|
|
|
@ -1,6 +0,0 @@
|
|||
model_list:
|
||||
- model_name: gpt-3.5-turbo
|
||||
litellm_params:
|
||||
model: openai/my-fake-model
|
||||
api_key: my-fake-key
|
||||
api_base: http://0.0.0.0:8090
|
|
@ -1,20 +0,0 @@
|
|||
# Use the official Python image as the base image
|
||||
FROM python:3.9-slim
|
||||
|
||||
# Set the working directory in the container
|
||||
WORKDIR /app
|
||||
|
||||
# Copy the Python requirements file
|
||||
COPY requirements.txt .
|
||||
|
||||
# Install the Python dependencies
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Copy the application code
|
||||
COPY . .
|
||||
|
||||
# Expose the port the app will run on
|
||||
EXPOSE 8090
|
||||
|
||||
# Start the application
|
||||
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8090"]
|
|
@ -1,57 +0,0 @@
|
|||
# import sys, os
|
||||
# sys.path.insert(
|
||||
# 0, os.path.abspath("../")
|
||||
# ) # Adds the parent directory to the system path
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
|
||||
import litellm
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
litellm_router = litellm.Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "anything", # model alias -> loadbalance between models with same `model_name`
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "openai/anything", # actual model name
|
||||
"api_key": "sk-1234",
|
||||
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
|
||||
},
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
# for completion
|
||||
@app.post("/chat/completions")
|
||||
@app.post("/v1/chat/completions")
|
||||
async def completion(request: Request):
|
||||
# this proxy uses the OpenAI SDK to call a fixed endpoint
|
||||
|
||||
response = await litellm_router.acompletion(
|
||||
model="anything",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "hello who are you",
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
# run this on 8090, 8091, 8092 and 8093
|
||||
uvicorn.run(app, host="0.0.0.0", port=8090)
|
|
@ -1,34 +0,0 @@
|
|||
import uuid
|
||||
|
||||
from locust import HttpUser, between, task
|
||||
|
||||
|
||||
class MyUser(HttpUser):
|
||||
wait_time = between(1, 5)
|
||||
|
||||
@task
|
||||
def chat_completion(self):
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": "Bearer sk-1234",
|
||||
# Include any additional headers you may need for authentication, etc.
|
||||
}
|
||||
|
||||
# Customize the payload with "model" and "messages" keys
|
||||
payload = {
|
||||
"model": "fake-openai-endpoint",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": f"{uuid.uuid4()} this is a very sweet test message from ishaan"
|
||||
* 100,
|
||||
},
|
||||
{"role": "user", "content": "Hello, how are you?"},
|
||||
],
|
||||
# Add more data as necessary
|
||||
}
|
||||
|
||||
# Make a POST request to the "chat/completions" endpoint
|
||||
self.client.post("chat/completions", json=payload, headers=headers)
|
||||
|
||||
# Print or log the response if needed
|
|
@ -1,50 +0,0 @@
|
|||
# import sys, os
|
||||
# sys.path.insert(
|
||||
# 0, os.path.abspath("../")
|
||||
# ) # Adds the parent directory to the system path
|
||||
import uuid
|
||||
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
# for completion
|
||||
@app.post("/chat/completions")
|
||||
@app.post("/v1/chat/completions")
|
||||
async def completion(request: Request):
|
||||
return {
|
||||
"id": f"chatcmpl-{uuid.uuid4().hex}",
|
||||
"object": "chat.completion",
|
||||
"created": 1677652288,
|
||||
"model": "gpt-3.5-turbo-0125",
|
||||
"system_fingerprint": "fp_44709d6fcb",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "\n\nHello there, how may I assist you today?",
|
||||
},
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
"usage": {"prompt_tokens": 9, "completion_tokens": 12, "total_tokens": 21},
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
# run this on 8090, 8091, 8092 and 8093
|
||||
uvicorn.run(app, host="0.0.0.0", port=8090)
|
|
@ -1,51 +0,0 @@
|
|||
# import sys, os
|
||||
# sys.path.insert(
|
||||
# 0, os.path.abspath("../")
|
||||
# ) # Adds the parent directory to the system path
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
import litellm
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
litellm_client = AsyncOpenAI(
|
||||
base_url="https://exampleopenaiendpoint-production.up.railway.app/",
|
||||
api_key="sk-1234",
|
||||
)
|
||||
|
||||
|
||||
# for completion
|
||||
@app.post("/chat/completions")
|
||||
@app.post("/v1/chat/completions")
|
||||
async def completion(request: Request):
|
||||
# this proxy uses the OpenAI SDK to call a fixed endpoint
|
||||
|
||||
response = await litellm.acompletion(
|
||||
model="openai/anything",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "hello who are you",
|
||||
}
|
||||
],
|
||||
client=litellm_client,
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
# run this on 8090, 8091, 8092 and 8093
|
||||
uvicorn.run(app, host="0.0.0.0", port=8090)
|
|
@ -1,57 +0,0 @@
|
|||
# import sys, os
|
||||
# sys.path.insert(
|
||||
# 0, os.path.abspath("../")
|
||||
# ) # Adds the parent directory to the system path
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
|
||||
import litellm
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
litellm_router = litellm.Router(
|
||||
model_list=[
|
||||
{
|
||||
"model_name": "anything", # model alias -> loadbalance between models with same `model_name`
|
||||
"litellm_params": { # params for litellm completion/embedding call
|
||||
"model": "openai/anything", # actual model name
|
||||
"api_key": "sk-1234",
|
||||
"api_base": "https://exampleopenaiendpoint-production.up.railway.app/",
|
||||
},
|
||||
}
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
# for completion
|
||||
@app.post("/chat/completions")
|
||||
@app.post("/v1/chat/completions")
|
||||
async def completion(request: Request):
|
||||
# this proxy uses the OpenAI SDK to call a fixed endpoint
|
||||
|
||||
response = await litellm_router.acompletion(
|
||||
model="anything",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "hello who are you",
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
# run this on 8090, 8091, 8092 and 8093
|
||||
uvicorn.run(app, host="0.0.0.0", port=8090)
|
|
@ -1,48 +0,0 @@
|
|||
# import sys, os
|
||||
# sys.path.insert(
|
||||
# 0, os.path.abspath("../")
|
||||
# ) # Adds the parent directory to the system path
|
||||
from fastapi import FastAPI, Request
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
litellm_client = AsyncOpenAI(
|
||||
base_url="https://exampleopenaiendpoint-production.up.railway.app/",
|
||||
api_key="sk-1234",
|
||||
)
|
||||
|
||||
|
||||
# for completion
|
||||
@app.post("/chat/completions")
|
||||
@app.post("/v1/chat/completions")
|
||||
async def completion(request: Request):
|
||||
# this proxy uses the OpenAI SDK to call a fixed endpoint
|
||||
|
||||
response = await litellm_client.chat.completions.create(
|
||||
model="anything",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": "hello who are you",
|
||||
}
|
||||
],
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
# run this on 8090, 8091, 8092 and 8093
|
||||
uvicorn.run(app, host="0.0.0.0", port=8090)
|
Loading…
Add table
Add a link
Reference in a new issue