Merge pull request #3077 from BerriAI/litellm_delete_deployment_fix

fix(proxy_server.py): ensure id used in delete deployment matches id used in litellm Router
This commit is contained in:
Krish Dholakia 2024-04-16 15:48:43 -07:00 committed by GitHub
commit 593e9062da
4 changed files with 307 additions and 62 deletions

View file

@ -2410,27 +2410,44 @@ class ProxyConfig:
router = litellm.Router(**router_params, semaphore=semaphore) # type:ignore
return router, model_list, general_settings
async def _delete_deployment(self, db_models: list):
def get_model_info_with_id(self, model) -> RouterModelInfo:
"""
Common logic across add + delete router models
Parameters:
- deployment
Return model info w/ id
"""
if model.model_info is not None and isinstance(model.model_info, dict):
if "id" not in model.model_info:
model.model_info["id"] = model.model_id
_model_info = RouterModelInfo(**model.model_info)
else:
_model_info = RouterModelInfo(id=model.model_id)
return _model_info
async def _delete_deployment(self, db_models: list) -> int:
"""
(Helper function of add deployment) -> combined to reduce prisma db calls
- Create all up list of model id's (db + config)
- Compare all up list to router model id's
- Remove any that are missing
Return:
- int - returns number of deleted deployments
"""
global user_config_file_path, llm_router
combined_id_list = []
if llm_router is None:
return
return 0
## DB MODELS ##
for m in db_models:
if m.model_info is not None and isinstance(m.model_info, dict):
if "id" not in m.model_info:
m.model_info["id"] = m.model_id
combined_id_list.append(m.model_id)
else:
combined_id_list.append(m.model_id)
model_info = self.get_model_info_with_id(model=m)
if model_info.id is not None:
combined_id_list.append(model_info.id)
## CONFIG MODELS ##
config = await self.get_config(config_file_path=user_config_file_path)
model_list = config.get("model_list", None)
@ -2440,21 +2457,73 @@ class ProxyConfig:
for k, v in model["litellm_params"].items():
if isinstance(v, str) and v.startswith("os.environ/"):
model["litellm_params"][k] = litellm.get_secret(v)
litellm_model_name = model["litellm_params"]["model"]
litellm_model_api_base = model["litellm_params"].get("api_base", None)
model_id = litellm.Router()._generate_model_id(
model_id = llm_router._generate_model_id(
model_group=model["model_name"],
litellm_params=model["litellm_params"],
)
combined_id_list.append(model_id) # ADD CONFIG MODEL TO COMBINED LIST
router_model_ids = llm_router.get_model_ids()
# Check for model IDs in llm_router not present in combined_id_list and delete them
deleted_deployments = 0
for model_id in router_model_ids:
if model_id not in combined_id_list:
llm_router.delete_deployment(id=model_id)
is_deleted = llm_router.delete_deployment(id=model_id)
if is_deleted is not None:
deleted_deployments += 1
return deleted_deployments
def _add_deployment(self, db_models: list) -> int:
"""
Iterate through db models
for any not in router - add them.
Return - number of deployments added
"""
import base64
if master_key is None or not isinstance(master_key, str):
raise Exception(
f"Master key is not initialized or formatted. master_key={master_key}"
)
if llm_router is None:
return 0
added_models = 0
## ADD MODEL LOGIC
for m in db_models:
_litellm_params = m.litellm_params
if isinstance(_litellm_params, dict):
# decrypt values
for k, v in _litellm_params.items():
if isinstance(v, str):
# decode base64
decoded_b64 = base64.b64decode(v)
# decrypt value
_litellm_params[k] = decrypt_value(
value=decoded_b64, master_key=master_key
)
_litellm_params = LiteLLM_Params(**_litellm_params)
else:
verbose_proxy_logger.error(
f"Invalid model added to proxy db. Invalid litellm params. litellm_params={_litellm_params}"
)
continue # skip to next model
_model_info = self.get_model_info_with_id(model=m)
added = llm_router.add_deployment(
deployment=Deployment(
model_name=m.model_name,
litellm_params=_litellm_params,
model_info=_model_info,
)
)
if added is not None:
added_models += 1
return added_models
async def add_deployment(
self,
@ -2502,13 +2571,7 @@ class ProxyConfig:
)
continue # skip to next model
if m.model_info is not None and isinstance(m.model_info, dict):
if "id" not in m.model_info:
m.model_info["id"] = m.model_id
_model_info = RouterModelInfo(**m.model_info)
else:
_model_info = RouterModelInfo(id=m.model_id)
_model_info = self.get_model_info_with_id(model=m)
_model_list.append(
Deployment(
model_name=m.model_name,
@ -2526,39 +2589,7 @@ class ProxyConfig:
await self._delete_deployment(db_models=new_models)
## ADD MODEL LOGIC
for m in new_models:
_litellm_params = m.litellm_params
if isinstance(_litellm_params, dict):
# decrypt values
for k, v in _litellm_params.items():
if isinstance(v, str):
# decode base64
decoded_b64 = base64.b64decode(v)
# decrypt value
_litellm_params[k] = decrypt_value(
value=decoded_b64, master_key=master_key
)
_litellm_params = LiteLLM_Params(**_litellm_params)
else:
verbose_proxy_logger.error(
f"Invalid model added to proxy db. Invalid litellm params. litellm_params={_litellm_params}"
)
continue # skip to next model
if m.model_info is not None and isinstance(m.model_info, dict):
if "id" not in m.model_info:
m.model_info["id"] = m.model_id
_model_info = RouterModelInfo(**m.model_info)
else:
_model_info = RouterModelInfo(id=m.model_id)
llm_router.add_deployment(
deployment=Deployment(
model_name=m.model_name,
litellm_params=_litellm_params,
model_info=_model_info,
)
)
self._add_deployment(db_models=new_models)
llm_model_list = llm_router.get_model_list()
@ -3220,7 +3251,7 @@ async def startup_event():
scheduler.add_job(
proxy_config.add_deployment,
"interval",
seconds=30,
seconds=10,
args=[prisma_client, proxy_logging_obj],
)

View file

@ -2271,11 +2271,19 @@ class Router:
return deployment
def add_deployment(self, deployment: Deployment):
def add_deployment(self, deployment: Deployment) -> Optional[Deployment]:
"""
Parameters:
- deployment: Deployment - the deployment to be added to the Router
Returns:
- The added deployment
- OR None (if deployment already exists)
"""
# check if deployment already exists
if deployment.model_info.id in self.get_model_ids():
return
return None
# add to model list
_deployment = deployment.to_json(exclude_none=True)
@ -2286,7 +2294,7 @@ class Router:
# add to model names
self.model_names.append(deployment.model_name)
return
return deployment
def delete_deployment(self, id: str) -> Optional[Deployment]:
"""

View file

@ -0,0 +1,168 @@
# What is this?
## Unit tests for ProxyConfig class
import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os, io
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the, system path
import pytest, litellm
from pydantic import BaseModel
from litellm.proxy.proxy_server import ProxyConfig
from litellm.proxy.utils import encrypt_value
from litellm.types.router import Deployment, LiteLLM_Params, ModelInfo
class DBModel(BaseModel):
model_id: str
model_name: str
model_info: dict
litellm_params: dict
@pytest.mark.asyncio
async def test_delete_deployment():
"""
- Ensure the global llm router is not being reset
- Ensure invalid model is deleted
- Check if model id != model_info["id"], the model_info["id"] is picked
"""
import base64
litellm_params = LiteLLM_Params(
model="azure/chatgpt-v-2",
api_key=os.getenv("AZURE_API_KEY"),
api_base=os.getenv("AZURE_API_BASE"),
api_version=os.getenv("AZURE_API_VERSION"),
)
encrypted_litellm_params = litellm_params.dict(exclude_none=True)
master_key = "sk-1234"
setattr(litellm.proxy.proxy_server, "master_key", master_key)
for k, v in encrypted_litellm_params.items():
if isinstance(v, str):
encrypted_value = encrypt_value(v, master_key)
encrypted_litellm_params[k] = base64.b64encode(encrypted_value).decode(
"utf-8"
)
deployment = Deployment(model_name="gpt-3.5-turbo", litellm_params=litellm_params)
deployment_2 = Deployment(
model_name="gpt-3.5-turbo-2", litellm_params=litellm_params
)
llm_router = litellm.Router(
model_list=[
deployment.to_json(exclude_none=True),
deployment_2.to_json(exclude_none=True),
]
)
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
print(f"llm_router: {llm_router}")
pc = ProxyConfig()
db_model = DBModel(
model_id=deployment.model_info.id,
model_name="gpt-3.5-turbo",
litellm_params=encrypted_litellm_params,
model_info={"id": deployment.model_info.id},
)
db_models = [db_model]
deleted_deployments = await pc._delete_deployment(db_models=db_models)
assert deleted_deployments == 1
assert len(llm_router.model_list) == 1
"""
Scenario 2 - if model id != model_info["id"]
"""
llm_router = litellm.Router(
model_list=[
deployment.to_json(exclude_none=True),
deployment_2.to_json(exclude_none=True),
]
)
print(f"llm_router: {llm_router}")
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
pc = ProxyConfig()
db_model = DBModel(
model_id="12340523",
model_name="gpt-3.5-turbo",
litellm_params=encrypted_litellm_params,
model_info={"id": deployment.model_info.id},
)
db_models = [db_model]
deleted_deployments = await pc._delete_deployment(db_models=db_models)
assert deleted_deployments == 1
assert len(llm_router.model_list) == 1
@pytest.mark.asyncio
async def test_add_existing_deployment():
"""
- Only add new models
- don't re-add existing models
"""
import base64
litellm_params = LiteLLM_Params(
model="gpt-3.5-turbo",
api_key=os.getenv("AZURE_API_KEY"),
api_base=os.getenv("AZURE_API_BASE"),
api_version=os.getenv("AZURE_API_VERSION"),
)
deployment = Deployment(model_name="gpt-3.5-turbo", litellm_params=litellm_params)
deployment_2 = Deployment(
model_name="gpt-3.5-turbo-2", litellm_params=litellm_params
)
llm_router = litellm.Router(
model_list=[
deployment.to_json(exclude_none=True),
deployment_2.to_json(exclude_none=True),
]
)
print(f"llm_router: {llm_router}")
master_key = "sk-1234"
setattr(litellm.proxy.proxy_server, "llm_router", llm_router)
setattr(litellm.proxy.proxy_server, "master_key", master_key)
pc = ProxyConfig()
encrypted_litellm_params = litellm_params.dict(exclude_none=True)
for k, v in encrypted_litellm_params.items():
if isinstance(v, str):
encrypted_value = encrypt_value(v, master_key)
encrypted_litellm_params[k] = base64.b64encode(encrypted_value).decode(
"utf-8"
)
db_model = DBModel(
model_id=deployment.model_info.id,
model_name="gpt-3.5-turbo",
litellm_params=encrypted_litellm_params,
model_info={"id": deployment.model_info.id},
)
db_models = [db_model]
num_added = pc._add_deployment(db_models=db_models)
assert num_added == 0
@pytest.mark.asyncio
async def test_add_and_delete_deployments():
pass

View file

@ -101,12 +101,39 @@ class LiteLLM_Params(BaseModel):
aws_secret_access_key: Optional[str] = None
aws_region_name: Optional[str] = None
def __init__(self, max_retries: Optional[Union[int, str]] = None, **params):
def __init__(
self,
model: str,
max_retries: Optional[Union[int, str]] = None,
tpm: Optional[int] = None,
rpm: Optional[int] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
timeout: Optional[Union[float, str]] = None, # if str, pass in as os.environ/
stream_timeout: Optional[Union[float, str]] = (
None # timeout when making stream=True calls, if str, pass in as os.environ/
),
organization: Optional[str] = None, # for openai orgs
## VERTEX AI ##
vertex_project: Optional[str] = None,
vertex_location: Optional[str] = None,
## AWS BEDROCK / SAGEMAKER ##
aws_access_key_id: Optional[str] = None,
aws_secret_access_key: Optional[str] = None,
aws_region_name: Optional[str] = None,
**params
):
args = locals()
args.pop("max_retries", None)
args.pop("self", None)
args.pop("params", None)
args.pop("__class__", None)
if max_retries is None:
max_retries = 2
elif isinstance(max_retries, str):
max_retries = int(max_retries) # cast to int
super().__init__(max_retries=max_retries, **params)
super().__init__(max_retries=max_retries, **args, **params)
class Config:
extra = "allow"
@ -133,12 +160,23 @@ class Deployment(BaseModel):
litellm_params: LiteLLM_Params
model_info: ModelInfo
def __init__(self, model_info: Optional[Union[ModelInfo, dict]] = None, **params):
def __init__(
self,
model_name: str,
litellm_params: LiteLLM_Params,
model_info: Optional[Union[ModelInfo, dict]] = None,
**params
):
if model_info is None:
model_info = ModelInfo()
elif isinstance(model_info, dict):
model_info = ModelInfo(**model_info)
super().__init__(model_info=model_info, **params)
super().__init__(
model_info=model_info,
model_name=model_name,
litellm_params=litellm_params,
**params
)
def to_json(self, **kwargs):
try: