mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
feat(vertex_ai_partner.py): initial working commit for calling vertex ai mistral
Closes https://github.com/BerriAI/litellm/issues/4874
This commit is contained in:
parent
1a8f45e8da
commit
5b71421a7b
10 changed files with 343 additions and 140 deletions
|
@ -1,204 +0,0 @@
|
|||
# What is this?
|
||||
## Handler for calling llama 3.1 API on Vertex AI
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import types
|
||||
import uuid
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, List, Optional, Tuple, Union
|
||||
|
||||
import httpx # type: ignore
|
||||
import requests # type: ignore
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||||
from litellm.types.llms.anthropic import (
|
||||
AnthropicMessagesTool,
|
||||
AnthropicMessagesToolChoice,
|
||||
)
|
||||
from litellm.types.llms.openai import (
|
||||
ChatCompletionToolParam,
|
||||
ChatCompletionToolParamFunctionChunk,
|
||||
)
|
||||
from litellm.types.utils import ResponseFormatChunk
|
||||
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
|
||||
|
||||
from .base import BaseLLM
|
||||
from .prompt_templates.factory import (
|
||||
construct_tool_use_system_prompt,
|
||||
contains_tag,
|
||||
custom_prompt,
|
||||
extract_between_tags,
|
||||
parse_xml_params,
|
||||
prompt_factory,
|
||||
response_schema_prompt,
|
||||
)
|
||||
|
||||
|
||||
class VertexAIError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(
|
||||
method="POST", url=" https://cloud.google.com/vertex-ai/"
|
||||
)
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class VertexAILlama3Config:
|
||||
"""
|
||||
Reference:https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/llama#streaming
|
||||
|
||||
The class `VertexAILlama3Config` provides configuration for the VertexAI's Llama API interface. Below are the parameters:
|
||||
|
||||
- `max_tokens` Required (integer) max tokens,
|
||||
|
||||
Note: Please make sure to modify the default parameters as required for your use case.
|
||||
"""
|
||||
|
||||
max_tokens: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key == "max_tokens" and value is None:
|
||||
value = self.max_tokens
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self):
|
||||
return [
|
||||
"max_tokens",
|
||||
"stream",
|
||||
]
|
||||
|
||||
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
return optional_params
|
||||
|
||||
|
||||
class VertexAILlama3(BaseLLM):
|
||||
def __init__(self) -> None:
|
||||
pass
|
||||
|
||||
def create_vertex_llama3_url(
|
||||
self, vertex_location: str, vertex_project: str
|
||||
) -> str:
|
||||
return f"https://{vertex_location}-aiplatform.googleapis.com/v1beta1/projects/{vertex_project}/locations/{vertex_location}/endpoints/openapi"
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
custom_prompt_dict: dict,
|
||||
headers: Optional[dict],
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
vertex_project=None,
|
||||
vertex_location=None,
|
||||
vertex_credentials=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
acompletion: bool = False,
|
||||
client=None,
|
||||
):
|
||||
try:
|
||||
import vertexai
|
||||
from google.cloud import aiplatform
|
||||
|
||||
from litellm.llms.openai import OpenAIChatCompletion
|
||||
from litellm.llms.vertex_httpx import VertexLLM
|
||||
except Exception:
|
||||
|
||||
raise VertexAIError(
|
||||
status_code=400,
|
||||
message="""vertexai import failed please run `pip install -U "google-cloud-aiplatform>=1.38"`""",
|
||||
)
|
||||
|
||||
if not (
|
||||
hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
|
||||
):
|
||||
raise VertexAIError(
|
||||
status_code=400,
|
||||
message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
|
||||
)
|
||||
try:
|
||||
|
||||
vertex_httpx_logic = VertexLLM()
|
||||
|
||||
access_token, project_id = vertex_httpx_logic._ensure_access_token(
|
||||
credentials=vertex_credentials, project_id=vertex_project
|
||||
)
|
||||
|
||||
openai_chat_completions = OpenAIChatCompletion()
|
||||
|
||||
## Load Config
|
||||
# config = litellm.VertexAILlama3.get_config()
|
||||
# for k, v in config.items():
|
||||
# if k not in optional_params:
|
||||
# optional_params[k] = v
|
||||
|
||||
## CONSTRUCT API BASE
|
||||
stream: bool = optional_params.get("stream", False) or False
|
||||
|
||||
optional_params["stream"] = stream
|
||||
|
||||
api_base = self.create_vertex_llama3_url(
|
||||
vertex_location=vertex_location or "us-central1",
|
||||
vertex_project=vertex_project or project_id,
|
||||
)
|
||||
|
||||
return openai_chat_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
api_key=access_token,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
acompletion=acompletion,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
client=client,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
raise VertexAIError(status_code=500, message=str(e))
|
Loading…
Add table
Add a link
Reference in a new issue