mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
fix refactor - add batches endpoints proxy server.py
This commit is contained in:
parent
b09ac45d7b
commit
5dd5cc7d87
1 changed files with 224 additions and 0 deletions
|
@ -4563,6 +4563,230 @@ async def run_thread(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
######################################################################
|
||||||
|
|
||||||
|
# /v1/batches Endpoints
|
||||||
|
|
||||||
|
|
||||||
|
######################################################################
|
||||||
|
@router.post(
|
||||||
|
"/v1/batches",
|
||||||
|
dependencies=[Depends(user_api_key_auth)],
|
||||||
|
tags=["batch"],
|
||||||
|
)
|
||||||
|
@router.post(
|
||||||
|
"/batches",
|
||||||
|
dependencies=[Depends(user_api_key_auth)],
|
||||||
|
tags=["batch"],
|
||||||
|
)
|
||||||
|
async def create_batch(
|
||||||
|
request: Request,
|
||||||
|
fastapi_response: Response,
|
||||||
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Create large batches of API requests for asynchronous processing.
|
||||||
|
This is the equivalent of POST https://api.openai.com/v1/batch
|
||||||
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch
|
||||||
|
|
||||||
|
Example Curl
|
||||||
|
```
|
||||||
|
curl http://localhost:4000/v1/batches \
|
||||||
|
-H "Authorization: Bearer sk-1234" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"input_file_id": "file-abc123",
|
||||||
|
"endpoint": "/v1/chat/completions",
|
||||||
|
"completion_window": "24h"
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
global proxy_logging_obj
|
||||||
|
data: Dict = {}
|
||||||
|
try:
|
||||||
|
# Use orjson to parse JSON data, orjson speeds up requests significantly
|
||||||
|
form_data = await request.form()
|
||||||
|
data = {key: value for key, value in form_data.items() if key != "file"}
|
||||||
|
|
||||||
|
# Include original request and headers in the data
|
||||||
|
data = await add_litellm_data_to_request(
|
||||||
|
data=data,
|
||||||
|
request=request,
|
||||||
|
general_settings=general_settings,
|
||||||
|
user_api_key_dict=user_api_key_dict,
|
||||||
|
version=version,
|
||||||
|
proxy_config=proxy_config,
|
||||||
|
)
|
||||||
|
|
||||||
|
_create_batch_data = CreateBatchRequest(**data)
|
||||||
|
|
||||||
|
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
|
||||||
|
response = await litellm.acreate_batch(
|
||||||
|
custom_llm_provider="openai", **_create_batch_data
|
||||||
|
)
|
||||||
|
|
||||||
|
### ALERTING ###
|
||||||
|
data["litellm_status"] = "success" # used for alerting
|
||||||
|
|
||||||
|
### RESPONSE HEADERS ###
|
||||||
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||||
|
model_id = hidden_params.get("model_id", None) or ""
|
||||||
|
cache_key = hidden_params.get("cache_key", None) or ""
|
||||||
|
api_base = hidden_params.get("api_base", None) or ""
|
||||||
|
|
||||||
|
fastapi_response.headers.update(
|
||||||
|
get_custom_headers(
|
||||||
|
user_api_key_dict=user_api_key_dict,
|
||||||
|
model_id=model_id,
|
||||||
|
cache_key=cache_key,
|
||||||
|
api_base=api_base,
|
||||||
|
version=version,
|
||||||
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
return response
|
||||||
|
except Exception as e:
|
||||||
|
data["litellm_status"] = "fail" # used for alerting
|
||||||
|
await proxy_logging_obj.post_call_failure_hook(
|
||||||
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||||
|
)
|
||||||
|
verbose_proxy_logger.error(
|
||||||
|
"litellm.proxy.proxy_server.create_batch(): Exception occured - {}".format(
|
||||||
|
str(e)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
verbose_proxy_logger.debug(traceback.format_exc())
|
||||||
|
if isinstance(e, HTTPException):
|
||||||
|
raise ProxyException(
|
||||||
|
message=getattr(e, "message", str(e.detail)),
|
||||||
|
type=getattr(e, "type", "None"),
|
||||||
|
param=getattr(e, "param", "None"),
|
||||||
|
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
error_msg = f"{str(e)}"
|
||||||
|
raise ProxyException(
|
||||||
|
message=getattr(e, "message", error_msg),
|
||||||
|
type=getattr(e, "type", "None"),
|
||||||
|
param=getattr(e, "param", "None"),
|
||||||
|
code=getattr(e, "status_code", 500),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@router.get(
|
||||||
|
"/v1/batches{batch_id}",
|
||||||
|
dependencies=[Depends(user_api_key_auth)],
|
||||||
|
tags=["batch"],
|
||||||
|
)
|
||||||
|
@router.get(
|
||||||
|
"/batches{batch_id}",
|
||||||
|
dependencies=[Depends(user_api_key_auth)],
|
||||||
|
tags=["batch"],
|
||||||
|
)
|
||||||
|
async def retrieve_batch(
|
||||||
|
request: Request,
|
||||||
|
fastapi_response: Response,
|
||||||
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||||
|
batch_id: str = Path(
|
||||||
|
title="Batch ID to retrieve", description="The ID of the batch to retrieve"
|
||||||
|
),
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Retrieves a batch.
|
||||||
|
This is the equivalent of GET https://api.openai.com/v1/batches/{batch_id}
|
||||||
|
Supports Identical Params as: https://platform.openai.com/docs/api-reference/batch/retrieve
|
||||||
|
|
||||||
|
Example Curl
|
||||||
|
```
|
||||||
|
curl http://localhost:4000/v1/batches/batch_abc123 \
|
||||||
|
-H "Authorization: Bearer sk-1234" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
global proxy_logging_obj
|
||||||
|
data: Dict = {}
|
||||||
|
try:
|
||||||
|
# Use orjson to parse JSON data, orjson speeds up requests significantly
|
||||||
|
form_data = await request.form()
|
||||||
|
data = {key: value for key, value in form_data.items() if key != "file"}
|
||||||
|
|
||||||
|
# Include original request and headers in the data
|
||||||
|
data = await add_litellm_data_to_request(
|
||||||
|
data=data,
|
||||||
|
request=request,
|
||||||
|
general_settings=general_settings,
|
||||||
|
user_api_key_dict=user_api_key_dict,
|
||||||
|
version=version,
|
||||||
|
proxy_config=proxy_config,
|
||||||
|
)
|
||||||
|
|
||||||
|
_retrieve_batch_request = RetrieveBatchRequest(
|
||||||
|
batch_id=batch_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
|
||||||
|
response = await litellm.aretrieve_batch(
|
||||||
|
custom_llm_provider="openai", **_retrieve_batch_request
|
||||||
|
)
|
||||||
|
|
||||||
|
### ALERTING ###
|
||||||
|
data["litellm_status"] = "success" # used for alerting
|
||||||
|
|
||||||
|
### RESPONSE HEADERS ###
|
||||||
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||||
|
model_id = hidden_params.get("model_id", None) or ""
|
||||||
|
cache_key = hidden_params.get("cache_key", None) or ""
|
||||||
|
api_base = hidden_params.get("api_base", None) or ""
|
||||||
|
|
||||||
|
fastapi_response.headers.update(
|
||||||
|
get_custom_headers(
|
||||||
|
user_api_key_dict=user_api_key_dict,
|
||||||
|
model_id=model_id,
|
||||||
|
cache_key=cache_key,
|
||||||
|
api_base=api_base,
|
||||||
|
version=version,
|
||||||
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
return response
|
||||||
|
except Exception as e:
|
||||||
|
data["litellm_status"] = "fail" # used for alerting
|
||||||
|
await proxy_logging_obj.post_call_failure_hook(
|
||||||
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||||
|
)
|
||||||
|
verbose_proxy_logger.error(
|
||||||
|
"litellm.proxy.proxy_server.retrieve_batch(): Exception occured - {}".format(
|
||||||
|
str(e)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
verbose_proxy_logger.debug(traceback.format_exc())
|
||||||
|
if isinstance(e, HTTPException):
|
||||||
|
raise ProxyException(
|
||||||
|
message=getattr(e, "message", str(e.detail)),
|
||||||
|
type=getattr(e, "type", "None"),
|
||||||
|
param=getattr(e, "param", "None"),
|
||||||
|
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
error_traceback = traceback.format_exc()
|
||||||
|
error_msg = f"{str(e)}"
|
||||||
|
raise ProxyException(
|
||||||
|
message=getattr(e, "message", error_msg),
|
||||||
|
type=getattr(e, "type", "None"),
|
||||||
|
param=getattr(e, "param", "None"),
|
||||||
|
code=getattr(e, "status_code", 500),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
######################################################################
|
||||||
|
|
||||||
|
# END OF /v1/batches Endpoints Implementation
|
||||||
|
|
||||||
|
######################################################################
|
||||||
|
|
||||||
######################################################################
|
######################################################################
|
||||||
|
|
||||||
# /v1/files Endpoints
|
# /v1/files Endpoints
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue