(feat) Add usage tracking for streaming /anthropic passthrough routes (#6842)

* use 1 file for AnthropicPassthroughLoggingHandler

* add support for anthropic streaming usage tracking

* ci/cd run again

* fix - add real streaming for anthropic pass through

* remove unused function stream_response

* working anthropic streaming logging

* fix code quality

* fix use 1 file for vertex success handler

* use helper for _handle_logging_vertex_collected_chunks

* enforce vertex streaming to use sse for streaming

* test test_basic_vertex_ai_pass_through_streaming_with_spendlog

* fix type hints

* add comment

* fix linting

* add pass through logging unit testing
This commit is contained in:
Ishaan Jaff 2024-11-21 19:36:03 -08:00 committed by GitHub
parent aa6b133557
commit 5fd5bb615c
12 changed files with 688 additions and 295 deletions

View file

@ -4,114 +4,116 @@ from datetime import datetime
from enum import Enum
from typing import AsyncIterable, Dict, List, Optional, Union
import httpx
import litellm
from litellm._logging import verbose_proxy_logger
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.anthropic.chat.handler import (
ModelResponseIterator as AnthropicIterator,
)
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
ModelResponseIterator as VertexAIIterator,
)
from litellm.types.utils import GenericStreamingChunk
from .llm_provider_handlers.anthropic_passthrough_logging_handler import (
AnthropicPassthroughLoggingHandler,
)
from .llm_provider_handlers.vertex_passthrough_logging_handler import (
VertexPassthroughLoggingHandler,
)
from .success_handler import PassThroughEndpointLogging
from .types import EndpointType
def get_litellm_chunk(
model_iterator: VertexAIIterator,
custom_stream_wrapper: litellm.utils.CustomStreamWrapper,
chunk_dict: Dict,
) -> Optional[Dict]:
generic_chunk: GenericStreamingChunk = model_iterator.chunk_parser(chunk_dict)
if generic_chunk:
return custom_stream_wrapper.chunk_creator(chunk=generic_chunk)
return None
def get_iterator_class_from_endpoint_type(
endpoint_type: EndpointType,
) -> Optional[type]:
if endpoint_type == EndpointType.VERTEX_AI:
return VertexAIIterator
return None
async def chunk_processor(
aiter_bytes: AsyncIterable[bytes],
response: httpx.Response,
request_body: Optional[dict],
litellm_logging_obj: LiteLLMLoggingObj,
endpoint_type: EndpointType,
start_time: datetime,
passthrough_success_handler_obj: PassThroughEndpointLogging,
url_route: str,
) -> AsyncIterable[bytes]:
):
"""
- Yields chunks from the response
- Collect non-empty chunks for post-processing (logging)
"""
collected_chunks: List[str] = [] # List to store all chunks
try:
async for chunk in response.aiter_lines():
verbose_proxy_logger.debug(f"Processing chunk: {chunk}")
if not chunk:
continue
iteratorClass = get_iterator_class_from_endpoint_type(endpoint_type)
if iteratorClass is None:
# Generic endpoint - litellm does not do any tracking / logging for this
async for chunk in aiter_bytes:
yield chunk
else:
# known streaming endpoint - litellm will do tracking / logging for this
model_iterator = iteratorClass(
sync_stream=False, streaming_response=aiter_bytes
)
custom_stream_wrapper = litellm.utils.CustomStreamWrapper(
completion_stream=aiter_bytes, model=None, logging_obj=litellm_logging_obj
)
buffer = b""
all_chunks = []
async for chunk in aiter_bytes:
buffer += chunk
try:
_decoded_chunk = chunk.decode("utf-8")
_chunk_dict = json.loads(_decoded_chunk)
litellm_chunk = get_litellm_chunk(
model_iterator, custom_stream_wrapper, _chunk_dict
)
if litellm_chunk:
all_chunks.append(litellm_chunk)
except json.JSONDecodeError:
pass
finally:
yield chunk # Yield the original bytes
# Handle SSE format - pass through the raw SSE format
if isinstance(chunk, bytes):
chunk = chunk.decode("utf-8")
# Process any remaining data in the buffer
if buffer:
try:
_chunk_dict = json.loads(buffer.decode("utf-8"))
# Store the chunk for post-processing
if chunk.strip(): # Only store non-empty chunks
collected_chunks.append(chunk)
yield f"{chunk}\n"
if isinstance(_chunk_dict, list):
for _chunk in _chunk_dict:
litellm_chunk = get_litellm_chunk(
model_iterator, custom_stream_wrapper, _chunk
)
if litellm_chunk:
all_chunks.append(litellm_chunk)
elif isinstance(_chunk_dict, dict):
litellm_chunk = get_litellm_chunk(
model_iterator, custom_stream_wrapper, _chunk_dict
)
if litellm_chunk:
all_chunks.append(litellm_chunk)
except json.JSONDecodeError:
pass
complete_streaming_response: Optional[
Union[litellm.ModelResponse, litellm.TextCompletionResponse]
] = litellm.stream_chunk_builder(chunks=all_chunks)
if complete_streaming_response is None:
complete_streaming_response = litellm.ModelResponse()
# After all chunks are processed, handle post-processing
end_time = datetime.now()
if passthrough_success_handler_obj.is_vertex_route(url_route):
_model = passthrough_success_handler_obj.extract_model_from_url(url_route)
complete_streaming_response.model = _model
litellm_logging_obj.model = _model
litellm_logging_obj.model_call_details["model"] = _model
asyncio.create_task(
litellm_logging_obj.async_success_handler(
result=complete_streaming_response,
start_time=start_time,
end_time=end_time,
)
await _route_streaming_logging_to_handler(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body or {},
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=collected_chunks,
end_time=end_time,
)
except Exception as e:
verbose_proxy_logger.error(f"Error in chunk_processor: {str(e)}")
raise
async def _route_streaming_logging_to_handler(
litellm_logging_obj: LiteLLMLoggingObj,
passthrough_success_handler_obj: PassThroughEndpointLogging,
url_route: str,
request_body: dict,
endpoint_type: EndpointType,
start_time: datetime,
all_chunks: List[str],
end_time: datetime,
):
"""
Route the logging for the collected chunks to the appropriate handler
Supported endpoint types:
- Anthropic
- Vertex AI
"""
if endpoint_type == EndpointType.ANTHROPIC:
await AnthropicPassthroughLoggingHandler._handle_logging_anthropic_collected_chunks(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body,
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=all_chunks,
end_time=end_time,
)
elif endpoint_type == EndpointType.VERTEX_AI:
await VertexPassthroughLoggingHandler._handle_logging_vertex_collected_chunks(
litellm_logging_obj=litellm_logging_obj,
passthrough_success_handler_obj=passthrough_success_handler_obj,
url_route=url_route,
request_body=request_body,
endpoint_type=endpoint_type,
start_time=start_time,
all_chunks=all_chunks,
end_time=end_time,
)
elif endpoint_type == EndpointType.GENERIC:
# No logging is supported for generic streaming endpoints
pass