mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
(feat) Add usage tracking for streaming /anthropic
passthrough routes (#6842)
* use 1 file for AnthropicPassthroughLoggingHandler * add support for anthropic streaming usage tracking * ci/cd run again * fix - add real streaming for anthropic pass through * remove unused function stream_response * working anthropic streaming logging * fix code quality * fix use 1 file for vertex success handler * use helper for _handle_logging_vertex_collected_chunks * enforce vertex streaming to use sse for streaming * test test_basic_vertex_ai_pass_through_streaming_with_spendlog * fix type hints * add comment * fix linting * add pass through logging unit testing
This commit is contained in:
parent
aa6b133557
commit
5fd5bb615c
12 changed files with 688 additions and 295 deletions
|
@ -12,13 +12,19 @@ from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
|
|||
from litellm.litellm_core_utils.litellm_logging import (
|
||||
get_standard_logging_object_payload,
|
||||
)
|
||||
from litellm.llms.anthropic.chat.transformation import AnthropicConfig
|
||||
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
||||
VertexLLM,
|
||||
)
|
||||
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
|
||||
from litellm.types.utils import StandardPassThroughResponseObject
|
||||
|
||||
from .llm_provider_handlers.anthropic_passthrough_logging_handler import (
|
||||
AnthropicPassthroughLoggingHandler,
|
||||
)
|
||||
from .llm_provider_handlers.vertex_passthrough_logging_handler import (
|
||||
VertexPassthroughLoggingHandler,
|
||||
)
|
||||
|
||||
|
||||
class PassThroughEndpointLogging:
|
||||
def __init__(self):
|
||||
|
@ -44,7 +50,7 @@ class PassThroughEndpointLogging:
|
|||
**kwargs,
|
||||
):
|
||||
if self.is_vertex_route(url_route):
|
||||
await self.vertex_passthrough_handler(
|
||||
await VertexPassthroughLoggingHandler.vertex_passthrough_handler(
|
||||
httpx_response=httpx_response,
|
||||
logging_obj=logging_obj,
|
||||
url_route=url_route,
|
||||
|
@ -55,7 +61,7 @@ class PassThroughEndpointLogging:
|
|||
**kwargs,
|
||||
)
|
||||
elif self.is_anthropic_route(url_route):
|
||||
await self.anthropic_passthrough_handler(
|
||||
await AnthropicPassthroughLoggingHandler.anthropic_passthrough_handler(
|
||||
httpx_response=httpx_response,
|
||||
response_body=response_body or {},
|
||||
logging_obj=logging_obj,
|
||||
|
@ -102,166 +108,3 @@ class PassThroughEndpointLogging:
|
|||
if route in url_route:
|
||||
return True
|
||||
return False
|
||||
|
||||
def extract_model_from_url(self, url: str) -> str:
|
||||
pattern = r"/models/([^:]+)"
|
||||
match = re.search(pattern, url)
|
||||
if match:
|
||||
return match.group(1)
|
||||
return "unknown"
|
||||
|
||||
async def anthropic_passthrough_handler(
|
||||
self,
|
||||
httpx_response: httpx.Response,
|
||||
response_body: dict,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
url_route: str,
|
||||
result: str,
|
||||
start_time: datetime,
|
||||
end_time: datetime,
|
||||
cache_hit: bool,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Transforms Anthropic response to OpenAI response, generates a standard logging object so downstream logging can be handled
|
||||
"""
|
||||
model = response_body.get("model", "")
|
||||
litellm_model_response: litellm.ModelResponse = (
|
||||
AnthropicConfig._process_response(
|
||||
response=httpx_response,
|
||||
model_response=litellm.ModelResponse(),
|
||||
model=model,
|
||||
stream=False,
|
||||
messages=[],
|
||||
logging_obj=logging_obj,
|
||||
optional_params={},
|
||||
api_key="",
|
||||
data={},
|
||||
print_verbose=litellm.print_verbose,
|
||||
encoding=None,
|
||||
json_mode=False,
|
||||
)
|
||||
)
|
||||
|
||||
response_cost = litellm.completion_cost(
|
||||
completion_response=litellm_model_response,
|
||||
model=model,
|
||||
)
|
||||
kwargs["response_cost"] = response_cost
|
||||
kwargs["model"] = model
|
||||
|
||||
# Make standard logging object for Vertex AI
|
||||
standard_logging_object = get_standard_logging_object_payload(
|
||||
kwargs=kwargs,
|
||||
init_response_obj=litellm_model_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
logging_obj=logging_obj,
|
||||
status="success",
|
||||
)
|
||||
|
||||
# pretty print standard logging object
|
||||
verbose_proxy_logger.debug(
|
||||
"standard_logging_object= %s", json.dumps(standard_logging_object, indent=4)
|
||||
)
|
||||
kwargs["standard_logging_object"] = standard_logging_object
|
||||
|
||||
await logging_obj.async_success_handler(
|
||||
result=litellm_model_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
cache_hit=cache_hit,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
pass
|
||||
|
||||
async def vertex_passthrough_handler(
|
||||
self,
|
||||
httpx_response: httpx.Response,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
url_route: str,
|
||||
result: str,
|
||||
start_time: datetime,
|
||||
end_time: datetime,
|
||||
cache_hit: bool,
|
||||
**kwargs,
|
||||
):
|
||||
if "generateContent" in url_route:
|
||||
model = self.extract_model_from_url(url_route)
|
||||
|
||||
instance_of_vertex_llm = litellm.VertexGeminiConfig()
|
||||
litellm_model_response: litellm.ModelResponse = (
|
||||
instance_of_vertex_llm._transform_response(
|
||||
model=model,
|
||||
messages=[
|
||||
{"role": "user", "content": "no-message-pass-through-endpoint"}
|
||||
],
|
||||
response=httpx_response,
|
||||
model_response=litellm.ModelResponse(),
|
||||
logging_obj=logging_obj,
|
||||
optional_params={},
|
||||
litellm_params={},
|
||||
api_key="",
|
||||
data={},
|
||||
print_verbose=litellm.print_verbose,
|
||||
encoding=None,
|
||||
)
|
||||
)
|
||||
logging_obj.model = litellm_model_response.model or model
|
||||
logging_obj.model_call_details["model"] = logging_obj.model
|
||||
|
||||
await logging_obj.async_success_handler(
|
||||
result=litellm_model_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
cache_hit=cache_hit,
|
||||
**kwargs,
|
||||
)
|
||||
elif "predict" in url_route:
|
||||
from litellm.llms.vertex_ai_and_google_ai_studio.image_generation.image_generation_handler import (
|
||||
VertexImageGeneration,
|
||||
)
|
||||
from litellm.types.utils import PassthroughCallTypes
|
||||
|
||||
vertex_image_generation_class = VertexImageGeneration()
|
||||
|
||||
model = self.extract_model_from_url(url_route)
|
||||
_json_response = httpx_response.json()
|
||||
|
||||
litellm_prediction_response: Union[
|
||||
litellm.ModelResponse, litellm.EmbeddingResponse, litellm.ImageResponse
|
||||
] = litellm.ModelResponse()
|
||||
if vertex_image_generation_class.is_image_generation_response(
|
||||
_json_response
|
||||
):
|
||||
litellm_prediction_response = (
|
||||
vertex_image_generation_class.process_image_generation_response(
|
||||
_json_response,
|
||||
model_response=litellm.ImageResponse(),
|
||||
model=model,
|
||||
)
|
||||
)
|
||||
|
||||
logging_obj.call_type = (
|
||||
PassthroughCallTypes.passthrough_image_generation.value
|
||||
)
|
||||
else:
|
||||
litellm_prediction_response = litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
|
||||
response=_json_response,
|
||||
model=model,
|
||||
model_response=litellm.EmbeddingResponse(),
|
||||
)
|
||||
if isinstance(litellm_prediction_response, litellm.EmbeddingResponse):
|
||||
litellm_prediction_response.model = model
|
||||
|
||||
logging_obj.model = model
|
||||
logging_obj.model_call_details["model"] = logging_obj.model
|
||||
|
||||
await logging_obj.async_success_handler(
|
||||
result=litellm_prediction_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
cache_hit=cache_hit,
|
||||
**kwargs,
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue