mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
Merge pull request #4627 from BerriAI/litellm_fix_thread_auth
[Fix] Authentication on /thread endpoints on Proxy
This commit is contained in:
commit
6000687601
13 changed files with 493 additions and 25 deletions
|
@ -1,19 +1,27 @@
|
||||||
# What is this?
|
# What is this?
|
||||||
## Main file for assistants API logic
|
## Main file for assistants API logic
|
||||||
from typing import Iterable
|
import asyncio
|
||||||
|
import contextvars
|
||||||
|
import os
|
||||||
from functools import partial
|
from functools import partial
|
||||||
import os, asyncio, contextvars
|
from typing import Any, Dict, Iterable, List, Literal, Optional, Union
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
from openai import AsyncAzureOpenAI, AsyncOpenAI, AzureOpenAI, OpenAI
|
||||||
|
from openai.types.beta.assistant import Assistant
|
||||||
|
|
||||||
import litellm
|
import litellm
|
||||||
from openai import OpenAI, AsyncOpenAI, AzureOpenAI, AsyncAzureOpenAI
|
|
||||||
from litellm import client
|
from litellm import client
|
||||||
|
from litellm.types.router import GenericLiteLLMParams
|
||||||
from litellm.utils import (
|
from litellm.utils import (
|
||||||
supports_httpx_timeout,
|
|
||||||
exception_type,
|
exception_type,
|
||||||
get_llm_provider,
|
get_llm_provider,
|
||||||
get_secret,
|
get_secret,
|
||||||
|
supports_httpx_timeout,
|
||||||
)
|
)
|
||||||
from ..llms.openai import OpenAIAssistantsAPI
|
|
||||||
from ..llms.azure import AzureAssistantsAPI
|
from ..llms.azure import AzureAssistantsAPI
|
||||||
|
from ..llms.openai import OpenAIAssistantsAPI
|
||||||
from ..types.llms.openai import *
|
from ..types.llms.openai import *
|
||||||
from ..types.router import *
|
from ..types.router import *
|
||||||
from .utils import get_optional_params_add_message
|
from .utils import get_optional_params_add_message
|
||||||
|
@ -178,6 +186,159 @@ def get_assistants(
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
|
||||||
|
async def acreate_assistants(
|
||||||
|
custom_llm_provider: Literal["openai", "azure"],
|
||||||
|
client: Optional[AsyncOpenAI] = None,
|
||||||
|
**kwargs,
|
||||||
|
) -> Assistant:
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
### PASS ARGS TO GET ASSISTANTS ###
|
||||||
|
kwargs["async_create_assistants"] = True
|
||||||
|
try:
|
||||||
|
model = kwargs.pop("model", None)
|
||||||
|
kwargs["client"] = client
|
||||||
|
# Use a partial function to pass your keyword arguments
|
||||||
|
func = partial(create_assistants, custom_llm_provider, model, **kwargs)
|
||||||
|
|
||||||
|
# Add the context to the function
|
||||||
|
ctx = contextvars.copy_context()
|
||||||
|
func_with_context = partial(ctx.run, func)
|
||||||
|
|
||||||
|
_, custom_llm_provider, _, _ = get_llm_provider( # type: ignore
|
||||||
|
model=model, custom_llm_provider=custom_llm_provider
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
# Await normally
|
||||||
|
init_response = await loop.run_in_executor(None, func_with_context)
|
||||||
|
if asyncio.iscoroutine(init_response):
|
||||||
|
response = await init_response
|
||||||
|
else:
|
||||||
|
response = init_response
|
||||||
|
return response # type: ignore
|
||||||
|
except Exception as e:
|
||||||
|
raise exception_type(
|
||||||
|
model=model,
|
||||||
|
custom_llm_provider=custom_llm_provider,
|
||||||
|
original_exception=e,
|
||||||
|
completion_kwargs={},
|
||||||
|
extra_kwargs=kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def create_assistants(
|
||||||
|
custom_llm_provider: Literal["openai", "azure"],
|
||||||
|
model: str,
|
||||||
|
name: Optional[str] = None,
|
||||||
|
description: Optional[str] = None,
|
||||||
|
instructions: Optional[str] = None,
|
||||||
|
tools: Optional[List[Dict[str, Any]]] = None,
|
||||||
|
tool_resources: Optional[Dict[str, Any]] = None,
|
||||||
|
metadata: Optional[Dict[str, str]] = None,
|
||||||
|
temperature: Optional[float] = None,
|
||||||
|
top_p: Optional[float] = None,
|
||||||
|
response_format: Optional[Union[str, Dict[str, str]]] = None,
|
||||||
|
client: Optional[Any] = None,
|
||||||
|
api_key: Optional[str] = None,
|
||||||
|
api_base: Optional[str] = None,
|
||||||
|
api_version: Optional[str] = None,
|
||||||
|
**kwargs,
|
||||||
|
) -> Assistant:
|
||||||
|
async_create_assistants: Optional[bool] = kwargs.pop(
|
||||||
|
"async_create_assistants", None
|
||||||
|
)
|
||||||
|
if async_create_assistants is not None and not isinstance(
|
||||||
|
async_create_assistants, bool
|
||||||
|
):
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid value passed in for async_create_assistants. Only bool or None allowed"
|
||||||
|
)
|
||||||
|
optional_params = GenericLiteLLMParams(
|
||||||
|
api_key=api_key, api_base=api_base, api_version=api_version, **kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
### TIMEOUT LOGIC ###
|
||||||
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
||||||
|
# set timeout for 10 minutes by default
|
||||||
|
|
||||||
|
if (
|
||||||
|
timeout is not None
|
||||||
|
and isinstance(timeout, httpx.Timeout)
|
||||||
|
and supports_httpx_timeout(custom_llm_provider) == False
|
||||||
|
):
|
||||||
|
read_timeout = timeout.read or 600
|
||||||
|
timeout = read_timeout # default 10 min timeout
|
||||||
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
||||||
|
timeout = float(timeout) # type: ignore
|
||||||
|
elif timeout is None:
|
||||||
|
timeout = 600.0
|
||||||
|
|
||||||
|
response: Optional[Assistant] = None
|
||||||
|
if custom_llm_provider == "openai":
|
||||||
|
api_base = (
|
||||||
|
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
||||||
|
or litellm.api_base
|
||||||
|
or os.getenv("OPENAI_API_BASE")
|
||||||
|
or "https://api.openai.com/v1"
|
||||||
|
)
|
||||||
|
organization = (
|
||||||
|
optional_params.organization
|
||||||
|
or litellm.organization
|
||||||
|
or os.getenv("OPENAI_ORGANIZATION", None)
|
||||||
|
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
||||||
|
)
|
||||||
|
# set API KEY
|
||||||
|
api_key = (
|
||||||
|
optional_params.api_key
|
||||||
|
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
||||||
|
or litellm.openai_key
|
||||||
|
or os.getenv("OPENAI_API_KEY")
|
||||||
|
)
|
||||||
|
|
||||||
|
create_assistant_data = {
|
||||||
|
"model": model,
|
||||||
|
"name": name,
|
||||||
|
"description": description,
|
||||||
|
"instructions": instructions,
|
||||||
|
"tools": tools,
|
||||||
|
"tool_resources": tool_resources,
|
||||||
|
"metadata": metadata,
|
||||||
|
"temperature": temperature,
|
||||||
|
"top_p": top_p,
|
||||||
|
"response_format": response_format,
|
||||||
|
}
|
||||||
|
|
||||||
|
response = openai_assistants_api.create_assistants(
|
||||||
|
api_base=api_base,
|
||||||
|
api_key=api_key,
|
||||||
|
timeout=timeout,
|
||||||
|
max_retries=optional_params.max_retries,
|
||||||
|
organization=organization,
|
||||||
|
create_assistant_data=create_assistant_data,
|
||||||
|
client=client,
|
||||||
|
async_create_assistants=async_create_assistants, # type: ignore
|
||||||
|
) # type: ignore
|
||||||
|
else:
|
||||||
|
raise litellm.exceptions.BadRequestError(
|
||||||
|
message="LiteLLM doesn't support {} for 'create_assistants'. Only 'openai' is supported.".format(
|
||||||
|
custom_llm_provider
|
||||||
|
),
|
||||||
|
model="n/a",
|
||||||
|
llm_provider=custom_llm_provider,
|
||||||
|
response=httpx.Response(
|
||||||
|
status_code=400,
|
||||||
|
content="Unsupported provider",
|
||||||
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
||||||
|
),
|
||||||
|
)
|
||||||
|
if response is None:
|
||||||
|
raise litellm.exceptions.InternalServerError(
|
||||||
|
message="No response returned from 'create_assistants'",
|
||||||
|
model=model,
|
||||||
|
llm_provider=custom_llm_provider,
|
||||||
|
)
|
||||||
|
return response
|
||||||
|
|
||||||
|
|
||||||
### THREADS ###
|
### THREADS ###
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -2383,6 +2383,63 @@ class OpenAIAssistantsAPI(BaseLLM):
|
||||||
|
|
||||||
return response
|
return response
|
||||||
|
|
||||||
|
# Create Assistant
|
||||||
|
async def async_create_assistants(
|
||||||
|
self,
|
||||||
|
api_key: Optional[str],
|
||||||
|
api_base: Optional[str],
|
||||||
|
timeout: Union[float, httpx.Timeout],
|
||||||
|
max_retries: Optional[int],
|
||||||
|
organization: Optional[str],
|
||||||
|
client: Optional[AsyncOpenAI],
|
||||||
|
create_assistant_data: dict,
|
||||||
|
) -> Assistant:
|
||||||
|
openai_client = self.async_get_openai_client(
|
||||||
|
api_key=api_key,
|
||||||
|
api_base=api_base,
|
||||||
|
timeout=timeout,
|
||||||
|
max_retries=max_retries,
|
||||||
|
organization=organization,
|
||||||
|
client=client,
|
||||||
|
)
|
||||||
|
|
||||||
|
response = await openai_client.beta.assistants.create(**create_assistant_data)
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
def create_assistants(
|
||||||
|
self,
|
||||||
|
api_key: Optional[str],
|
||||||
|
api_base: Optional[str],
|
||||||
|
timeout: Union[float, httpx.Timeout],
|
||||||
|
max_retries: Optional[int],
|
||||||
|
organization: Optional[str],
|
||||||
|
create_assistant_data: dict,
|
||||||
|
client=None,
|
||||||
|
async_create_assistants=None,
|
||||||
|
):
|
||||||
|
if async_create_assistants is not None and async_create_assistants == True:
|
||||||
|
return self.async_create_assistants(
|
||||||
|
api_key=api_key,
|
||||||
|
api_base=api_base,
|
||||||
|
timeout=timeout,
|
||||||
|
max_retries=max_retries,
|
||||||
|
organization=organization,
|
||||||
|
client=client,
|
||||||
|
create_assistant_data=create_assistant_data,
|
||||||
|
)
|
||||||
|
openai_client = self.get_openai_client(
|
||||||
|
api_key=api_key,
|
||||||
|
api_base=api_base,
|
||||||
|
timeout=timeout,
|
||||||
|
max_retries=max_retries,
|
||||||
|
organization=organization,
|
||||||
|
client=client,
|
||||||
|
)
|
||||||
|
|
||||||
|
response = openai_client.beta.assistants.create(**create_assistant_data)
|
||||||
|
return response
|
||||||
|
|
||||||
### MESSAGES ###
|
### MESSAGES ###
|
||||||
|
|
||||||
async def a_add_message(
|
async def a_add_message(
|
||||||
|
|
|
@ -175,10 +175,12 @@ class LiteLLMRoutes(enum.Enum):
|
||||||
"/chat/completions",
|
"/chat/completions",
|
||||||
"/v1/chat/completions",
|
"/v1/chat/completions",
|
||||||
# completions
|
# completions
|
||||||
|
"/engines/{model}/completions",
|
||||||
"/openai/deployments/{model}/completions",
|
"/openai/deployments/{model}/completions",
|
||||||
"/completions",
|
"/completions",
|
||||||
"/v1/completions",
|
"/v1/completions",
|
||||||
# embeddings
|
# embeddings
|
||||||
|
"/engines/{model}/embeddings",
|
||||||
"/openai/deployments/{model}/embeddings",
|
"/openai/deployments/{model}/embeddings",
|
||||||
"/embeddings",
|
"/embeddings",
|
||||||
"/v1/embeddings",
|
"/v1/embeddings",
|
||||||
|
|
|
@ -24,6 +24,7 @@ from litellm.proxy._types import (
|
||||||
LitellmUserRoles,
|
LitellmUserRoles,
|
||||||
UserAPIKeyAuth,
|
UserAPIKeyAuth,
|
||||||
)
|
)
|
||||||
|
from litellm.proxy.auth.auth_utils import is_openai_route
|
||||||
from litellm.proxy.utils import PrismaClient, ProxyLogging, log_to_opentelemetry
|
from litellm.proxy.utils import PrismaClient, ProxyLogging, log_to_opentelemetry
|
||||||
from litellm.types.services import ServiceLoggerPayload, ServiceTypes
|
from litellm.types.services import ServiceLoggerPayload, ServiceTypes
|
||||||
|
|
||||||
|
@ -105,7 +106,7 @@ def common_checks(
|
||||||
general_settings.get("enforce_user_param", None) is not None
|
general_settings.get("enforce_user_param", None) is not None
|
||||||
and general_settings["enforce_user_param"] == True
|
and general_settings["enforce_user_param"] == True
|
||||||
):
|
):
|
||||||
if route in LiteLLMRoutes.openai_routes.value and "user" not in request_body:
|
if is_openai_route(route=route) and "user" not in request_body:
|
||||||
raise Exception(
|
raise Exception(
|
||||||
f"'user' param not passed in. 'enforce_user_param'={general_settings['enforce_user_param']}"
|
f"'user' param not passed in. 'enforce_user_param'={general_settings['enforce_user_param']}"
|
||||||
)
|
)
|
||||||
|
@ -121,7 +122,7 @@ def common_checks(
|
||||||
+ CommonProxyErrors.not_premium_user.value
|
+ CommonProxyErrors.not_premium_user.value
|
||||||
)
|
)
|
||||||
|
|
||||||
if route in LiteLLMRoutes.openai_routes.value:
|
if is_openai_route(route=route):
|
||||||
# loop through each enforced param
|
# loop through each enforced param
|
||||||
# example enforced_params ['user', 'metadata', 'metadata.generation_name']
|
# example enforced_params ['user', 'metadata', 'metadata.generation_name']
|
||||||
for enforced_param in general_settings["enforced_params"]:
|
for enforced_param in general_settings["enforced_params"]:
|
||||||
|
@ -149,7 +150,7 @@ def common_checks(
|
||||||
and global_proxy_spend is not None
|
and global_proxy_spend is not None
|
||||||
# only run global budget checks for OpenAI routes
|
# only run global budget checks for OpenAI routes
|
||||||
# Reason - the Admin UI should continue working if the proxy crosses it's global budget
|
# Reason - the Admin UI should continue working if the proxy crosses it's global budget
|
||||||
and route in LiteLLMRoutes.openai_routes.value
|
and is_openai_route(route=route)
|
||||||
and route != "/v1/models"
|
and route != "/v1/models"
|
||||||
and route != "/models"
|
and route != "/models"
|
||||||
):
|
):
|
||||||
|
|
|
@ -1,4 +1,7 @@
|
||||||
|
import re
|
||||||
|
|
||||||
from litellm._logging import verbose_proxy_logger
|
from litellm._logging import verbose_proxy_logger
|
||||||
|
from litellm.proxy._types import *
|
||||||
|
|
||||||
|
|
||||||
def route_in_additonal_public_routes(current_route: str):
|
def route_in_additonal_public_routes(current_route: str):
|
||||||
|
@ -41,3 +44,31 @@ def route_in_additonal_public_routes(current_route: str):
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
verbose_proxy_logger.error(f"route_in_additonal_public_routes: {str(e)}")
|
verbose_proxy_logger.error(f"route_in_additonal_public_routes: {str(e)}")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def is_openai_route(route: str) -> bool:
|
||||||
|
"""
|
||||||
|
Helper to checks if provided route is an OpenAI route
|
||||||
|
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- True: if route is an OpenAI route
|
||||||
|
- False: if route is not an OpenAI route
|
||||||
|
"""
|
||||||
|
|
||||||
|
if route in LiteLLMRoutes.openai_routes.value:
|
||||||
|
return True
|
||||||
|
|
||||||
|
# fuzzy match routes like "/v1/threads/thread_49EIN5QF32s4mH20M7GFKdlZ"
|
||||||
|
# Check for routes with placeholders
|
||||||
|
for openai_route in LiteLLMRoutes.openai_routes.value:
|
||||||
|
# Replace placeholders with regex pattern
|
||||||
|
# placeholders are written as "/threads/{thread_id}"
|
||||||
|
if "{" in openai_route:
|
||||||
|
pattern = re.sub(r"\{[^}]+\}", r"[^/]+", openai_route)
|
||||||
|
# Anchor the pattern to match the entire string
|
||||||
|
pattern = f"^{pattern}$"
|
||||||
|
if re.match(pattern, route):
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
|
@ -56,7 +56,10 @@ from litellm.proxy.auth.auth_checks import (
|
||||||
get_user_object,
|
get_user_object,
|
||||||
log_to_opentelemetry,
|
log_to_opentelemetry,
|
||||||
)
|
)
|
||||||
from litellm.proxy.auth.auth_utils import route_in_additonal_public_routes
|
from litellm.proxy.auth.auth_utils import (
|
||||||
|
is_openai_route,
|
||||||
|
route_in_additonal_public_routes,
|
||||||
|
)
|
||||||
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body
|
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body
|
||||||
from litellm.proxy.utils import _to_ns
|
from litellm.proxy.utils import _to_ns
|
||||||
|
|
||||||
|
@ -933,9 +936,9 @@ async def user_api_key_auth(
|
||||||
_user_role = _get_user_role(user_id_information=user_id_information)
|
_user_role = _get_user_role(user_id_information=user_id_information)
|
||||||
|
|
||||||
if not _is_user_proxy_admin(user_id_information): # if non-admin
|
if not _is_user_proxy_admin(user_id_information): # if non-admin
|
||||||
if route in LiteLLMRoutes.openai_routes.value:
|
if is_openai_route(route=route):
|
||||||
pass
|
pass
|
||||||
elif request["route"].name in LiteLLMRoutes.openai_route_names.value:
|
elif is_openai_route(route=request["route"].name):
|
||||||
pass
|
pass
|
||||||
elif (
|
elif (
|
||||||
route in LiteLLMRoutes.info_routes.value
|
route in LiteLLMRoutes.info_routes.value
|
||||||
|
@ -988,7 +991,7 @@ async def user_api_key_auth(
|
||||||
|
|
||||||
pass
|
pass
|
||||||
elif _user_role == LitellmUserRoles.PROXY_ADMIN_VIEW_ONLY.value:
|
elif _user_role == LitellmUserRoles.PROXY_ADMIN_VIEW_ONLY.value:
|
||||||
if route in LiteLLMRoutes.openai_routes.value:
|
if is_openai_route(route=route):
|
||||||
raise HTTPException(
|
raise HTTPException(
|
||||||
status_code=status.HTTP_403_FORBIDDEN,
|
status_code=status.HTTP_403_FORBIDDEN,
|
||||||
detail=f"user not allowed to access this OpenAI routes, role= {_user_role}",
|
detail=f"user not allowed to access this OpenAI routes, role= {_user_role}",
|
||||||
|
|
|
@ -33,11 +33,11 @@ def _get_metadata_variable_name(request: Request) -> str:
|
||||||
"""
|
"""
|
||||||
Helper to return what the "metadata" field should be called in the request data
|
Helper to return what the "metadata" field should be called in the request data
|
||||||
|
|
||||||
For all /thread endpoints we need to call this "litellm_metadata"
|
For all /thread or /assistant endpoints we need to call this "litellm_metadata"
|
||||||
|
|
||||||
For ALL other endpoints we call this "metadata
|
For ALL other endpoints we call this "metadata
|
||||||
"""
|
"""
|
||||||
if "thread" in request.url.path:
|
if "thread" in request.url.path or "assistant" in request.url.path:
|
||||||
return "litellm_metadata"
|
return "litellm_metadata"
|
||||||
else:
|
else:
|
||||||
return "metadata"
|
return "metadata"
|
||||||
|
|
|
@ -35,7 +35,6 @@ general_settings:
|
||||||
LANGFUSE_SECRET_KEY: "os.environ/LANGFUSE_DEV_SK_KEY"
|
LANGFUSE_SECRET_KEY: "os.environ/LANGFUSE_DEV_SK_KEY"
|
||||||
|
|
||||||
litellm_settings:
|
litellm_settings:
|
||||||
callbacks: ["otel"]
|
|
||||||
guardrails:
|
guardrails:
|
||||||
- prompt_injection:
|
- prompt_injection:
|
||||||
callbacks: [lakera_prompt_injection, hide_secrets]
|
callbacks: [lakera_prompt_injection, hide_secrets]
|
||||||
|
@ -44,5 +43,8 @@ litellm_settings:
|
||||||
callbacks: [hide_secrets]
|
callbacks: [hide_secrets]
|
||||||
default_on: true
|
default_on: true
|
||||||
|
|
||||||
|
assistant_settings:
|
||||||
|
custom_llm_provider: openai
|
||||||
|
litellm_params:
|
||||||
|
api_key: os.environ/OPENAI_API_KEY
|
||||||
|
|
||||||
|
|
|
@ -3960,6 +3960,101 @@ async def get_assistants(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/v1/assistants",
|
||||||
|
dependencies=[Depends(user_api_key_auth)],
|
||||||
|
tags=["assistants"],
|
||||||
|
)
|
||||||
|
@router.post(
|
||||||
|
"/assistants",
|
||||||
|
dependencies=[Depends(user_api_key_auth)],
|
||||||
|
tags=["assistants"],
|
||||||
|
)
|
||||||
|
async def create_assistant(
|
||||||
|
request: Request,
|
||||||
|
fastapi_response: Response,
|
||||||
|
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Create assistant
|
||||||
|
|
||||||
|
API Reference docs - https://platform.openai.com/docs/api-reference/assistants/createAssistant
|
||||||
|
"""
|
||||||
|
global proxy_logging_obj
|
||||||
|
try:
|
||||||
|
# Use orjson to parse JSON data, orjson speeds up requests significantly
|
||||||
|
body = await request.body()
|
||||||
|
data = orjson.loads(body)
|
||||||
|
|
||||||
|
# Include original request and headers in the data
|
||||||
|
data = await add_litellm_data_to_request(
|
||||||
|
data=data,
|
||||||
|
request=request,
|
||||||
|
general_settings=general_settings,
|
||||||
|
user_api_key_dict=user_api_key_dict,
|
||||||
|
version=version,
|
||||||
|
proxy_config=proxy_config,
|
||||||
|
)
|
||||||
|
|
||||||
|
# for now use custom_llm_provider=="openai" -> this will change as LiteLLM adds more providers for acreate_batch
|
||||||
|
if llm_router is None:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=500, detail={"error": CommonProxyErrors.no_llm_router.value}
|
||||||
|
)
|
||||||
|
response = await llm_router.acreate_assistants(**data)
|
||||||
|
|
||||||
|
### ALERTING ###
|
||||||
|
asyncio.create_task(
|
||||||
|
proxy_logging_obj.update_request_status(
|
||||||
|
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
### RESPONSE HEADERS ###
|
||||||
|
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||||
|
model_id = hidden_params.get("model_id", None) or ""
|
||||||
|
cache_key = hidden_params.get("cache_key", None) or ""
|
||||||
|
api_base = hidden_params.get("api_base", None) or ""
|
||||||
|
|
||||||
|
fastapi_response.headers.update(
|
||||||
|
get_custom_headers(
|
||||||
|
user_api_key_dict=user_api_key_dict,
|
||||||
|
model_id=model_id,
|
||||||
|
cache_key=cache_key,
|
||||||
|
api_base=api_base,
|
||||||
|
version=version,
|
||||||
|
model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
return response
|
||||||
|
except Exception as e:
|
||||||
|
await proxy_logging_obj.post_call_failure_hook(
|
||||||
|
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||||
|
)
|
||||||
|
verbose_proxy_logger.error(
|
||||||
|
"litellm.proxy.proxy_server.create_assistant(): Exception occured - {}".format(
|
||||||
|
str(e)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
verbose_proxy_logger.debug(traceback.format_exc())
|
||||||
|
if isinstance(e, HTTPException):
|
||||||
|
raise ProxyException(
|
||||||
|
message=getattr(e, "message", str(e.detail)),
|
||||||
|
type=getattr(e, "type", "None"),
|
||||||
|
param=getattr(e, "param", "None"),
|
||||||
|
code=getattr(e, "status_code", status.HTTP_400_BAD_REQUEST),
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
error_msg = f"{str(e)}"
|
||||||
|
raise ProxyException(
|
||||||
|
message=getattr(e, "message", error_msg),
|
||||||
|
type=getattr(e, "type", "None"),
|
||||||
|
param=getattr(e, "param", "None"),
|
||||||
|
code=getattr(e, "status_code", 500),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@router.post(
|
@router.post(
|
||||||
"/v1/threads",
|
"/v1/threads",
|
||||||
dependencies=[Depends(user_api_key_auth)],
|
dependencies=[Depends(user_api_key_auth)],
|
||||||
|
|
|
@ -1970,6 +1970,25 @@ class Router:
|
||||||
|
|
||||||
#### ASSISTANTS API ####
|
#### ASSISTANTS API ####
|
||||||
|
|
||||||
|
async def acreate_assistants(
|
||||||
|
self,
|
||||||
|
custom_llm_provider: Optional[Literal["openai", "azure"]] = None,
|
||||||
|
client: Optional[AsyncOpenAI] = None,
|
||||||
|
**kwargs,
|
||||||
|
) -> Assistant:
|
||||||
|
if custom_llm_provider is None:
|
||||||
|
if self.assistants_config is not None:
|
||||||
|
custom_llm_provider = self.assistants_config["custom_llm_provider"]
|
||||||
|
kwargs.update(self.assistants_config["litellm_params"])
|
||||||
|
else:
|
||||||
|
raise Exception(
|
||||||
|
"'custom_llm_provider' must be set. Either via:\n `Router(assistants_config={'custom_llm_provider': ..})` \nor\n `router.arun_thread(custom_llm_provider=..)`"
|
||||||
|
)
|
||||||
|
|
||||||
|
return await litellm.acreate_assistants(
|
||||||
|
custom_llm_provider=custom_llm_provider, client=client, **kwargs
|
||||||
|
)
|
||||||
|
|
||||||
async def aget_assistants(
|
async def aget_assistants(
|
||||||
self,
|
self,
|
||||||
custom_llm_provider: Optional[Literal["openai", "azure"]] = None,
|
custom_llm_provider: Optional[Literal["openai", "azure"]] = None,
|
||||||
|
|
|
@ -1,27 +1,34 @@
|
||||||
# What is this?
|
# What is this?
|
||||||
## Unit Tests for OpenAI Assistants API
|
## Unit Tests for OpenAI Assistants API
|
||||||
import sys, os, json
|
import json
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
|
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
sys.path.insert(
|
sys.path.insert(
|
||||||
0, os.path.abspath("../..")
|
0, os.path.abspath("../..")
|
||||||
) # Adds the parent directory to the system path
|
) # Adds the parent directory to the system path
|
||||||
import pytest, logging, asyncio
|
import asyncio
|
||||||
|
import logging
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
from openai.types.beta.assistant import Assistant
|
||||||
|
from typing_extensions import override
|
||||||
|
|
||||||
import litellm
|
import litellm
|
||||||
from litellm import create_thread, get_thread
|
from litellm import create_thread, get_thread
|
||||||
from litellm.llms.openai import (
|
from litellm.llms.openai import (
|
||||||
OpenAIAssistantsAPI,
|
|
||||||
MessageData,
|
|
||||||
Thread,
|
|
||||||
OpenAIMessage as Message,
|
|
||||||
AsyncCursorPage,
|
|
||||||
SyncCursorPage,
|
|
||||||
AssistantEventHandler,
|
AssistantEventHandler,
|
||||||
AsyncAssistantEventHandler,
|
AsyncAssistantEventHandler,
|
||||||
|
AsyncCursorPage,
|
||||||
|
MessageData,
|
||||||
|
OpenAIAssistantsAPI,
|
||||||
)
|
)
|
||||||
from typing_extensions import override
|
from litellm.llms.openai import OpenAIMessage as Message
|
||||||
|
from litellm.llms.openai import SyncCursorPage, Thread
|
||||||
|
|
||||||
"""
|
"""
|
||||||
V0 Scope:
|
V0 Scope:
|
||||||
|
@ -52,6 +59,49 @@ async def test_get_assistants(provider, sync_mode):
|
||||||
assert isinstance(assistants, AsyncCursorPage)
|
assert isinstance(assistants, AsyncCursorPage)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("provider", ["openai"])
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"sync_mode",
|
||||||
|
[False],
|
||||||
|
)
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_create_assistants(provider, sync_mode):
|
||||||
|
data = {
|
||||||
|
"custom_llm_provider": provider,
|
||||||
|
}
|
||||||
|
|
||||||
|
if sync_mode == True:
|
||||||
|
assistant = litellm.create_assistants(
|
||||||
|
custom_llm_provider="openai",
|
||||||
|
model="gpt-4-turbo",
|
||||||
|
instructions="You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
|
||||||
|
name="Math Tutor",
|
||||||
|
tools=[{"type": "code_interpreter"}],
|
||||||
|
)
|
||||||
|
print("New assistants", assistant)
|
||||||
|
assert isinstance(assistant, Assistant)
|
||||||
|
assert (
|
||||||
|
assistant.instructions
|
||||||
|
== "You are a personal math tutor. When asked a question, write and run Python code to answer the question."
|
||||||
|
)
|
||||||
|
assert assistant.id is not None
|
||||||
|
else:
|
||||||
|
assistant = await litellm.acreate_assistants(
|
||||||
|
custom_llm_provider="openai",
|
||||||
|
model="gpt-4-turbo",
|
||||||
|
instructions="You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
|
||||||
|
name="Math Tutor",
|
||||||
|
tools=[{"type": "code_interpreter"}],
|
||||||
|
)
|
||||||
|
print("New assistants", assistant)
|
||||||
|
assert isinstance(assistant, Assistant)
|
||||||
|
assert (
|
||||||
|
assistant.instructions
|
||||||
|
== "You are a personal math tutor. When asked a question, write and run Python code to answer the question."
|
||||||
|
)
|
||||||
|
assert assistant.id is not None
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("provider", ["openai", "azure"])
|
@pytest.mark.parametrize("provider", ["openai", "azure"])
|
||||||
@pytest.mark.parametrize("sync_mode", [True, False])
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
|
|
|
@ -213,6 +213,10 @@ async def test_new_user_response(prisma_client):
|
||||||
# model_list
|
# model_list
|
||||||
APIRoute(path="/v1/models", endpoint=model_list),
|
APIRoute(path="/v1/models", endpoint=model_list),
|
||||||
APIRoute(path="/models", endpoint=model_list),
|
APIRoute(path="/models", endpoint=model_list),
|
||||||
|
# threads
|
||||||
|
APIRoute(
|
||||||
|
path="/v1/threads/thread_49EIN5QF32s4mH20M7GFKdlZ", endpoint=model_list
|
||||||
|
),
|
||||||
],
|
],
|
||||||
ids=lambda route: str(dict(route=route.endpoint.__name__, path=route.path)),
|
ids=lambda route: str(dict(route=route.endpoint.__name__, path=route.path)),
|
||||||
)
|
)
|
||||||
|
|
|
@ -19,6 +19,7 @@ import pytest
|
||||||
|
|
||||||
import litellm
|
import litellm
|
||||||
from litellm.proxy._types import LiteLLMRoutes
|
from litellm.proxy._types import LiteLLMRoutes
|
||||||
|
from litellm.proxy.auth.auth_utils import is_openai_route
|
||||||
from litellm.proxy.proxy_server import router
|
from litellm.proxy.proxy_server import router
|
||||||
|
|
||||||
# Configure logging
|
# Configure logging
|
||||||
|
@ -50,3 +51,45 @@ def test_routes_on_litellm_proxy():
|
||||||
|
|
||||||
for route in LiteLLMRoutes.openai_routes.value:
|
for route in LiteLLMRoutes.openai_routes.value:
|
||||||
assert route in _all_routes
|
assert route in _all_routes
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"route,expected",
|
||||||
|
[
|
||||||
|
# Test exact matches
|
||||||
|
("/chat/completions", True),
|
||||||
|
("/v1/chat/completions", True),
|
||||||
|
("/embeddings", True),
|
||||||
|
("/v1/models", True),
|
||||||
|
("/utils/token_counter", True),
|
||||||
|
# Test routes with placeholders
|
||||||
|
("/engines/gpt-4/chat/completions", True),
|
||||||
|
("/openai/deployments/gpt-3.5-turbo/chat/completions", True),
|
||||||
|
("/threads/thread_49EIN5QF32s4mH20M7GFKdlZ", True),
|
||||||
|
("/v1/threads/thread_49EIN5QF32s4mH20M7GFKdlZ", True),
|
||||||
|
("/threads/thread_49EIN5QF32s4mH20M7GFKdlZ/messages", True),
|
||||||
|
("/v1/threads/thread_49EIN5QF32s4mH20M7GFKdlZ/runs", True),
|
||||||
|
("/v1/batches123456", True),
|
||||||
|
# Test non-OpenAI routes
|
||||||
|
("/some/random/route", False),
|
||||||
|
("/v2/chat/completions", False),
|
||||||
|
("/threads/invalid/format", False),
|
||||||
|
("/v1/non_existent_endpoint", False),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_is_openai_route(route: str, expected: bool):
|
||||||
|
assert is_openai_route(route) == expected
|
||||||
|
|
||||||
|
|
||||||
|
# Test case for routes that are similar but should return False
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"route",
|
||||||
|
[
|
||||||
|
"/v1/threads/thread_id/invalid",
|
||||||
|
"/threads/thread_id/invalid",
|
||||||
|
"/v1/batches/123/invalid",
|
||||||
|
"/engines/model/invalid/completions",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_is_openai_route_similar_but_false(route: str):
|
||||||
|
assert is_openai_route(route) == False
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue