mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
refactor(sagemaker/): separate chat + completion routes + make them b… (#7151)
* refactor(sagemaker/): separate chat + completion routes + make them both use base llm config Addresses https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132 * fix(main.py): pass hf model name + custom prompt dict to litellm params
This commit is contained in:
parent
df12f87a64
commit
61afdab228
14 changed files with 799 additions and 534 deletions
|
@ -1103,7 +1103,8 @@ from .llms.vertex_ai_and_google_ai_studio.vertex_ai_partner_models.ai21.transfor
|
|||
VertexAIAi21Config,
|
||||
)
|
||||
|
||||
from .llms.sagemaker.sagemaker import SagemakerConfig
|
||||
from .llms.sagemaker.completion.transformation import SagemakerConfig
|
||||
from .llms.sagemaker.chat.transformation import SagemakerChatConfig
|
||||
from .llms.ollama import OllamaConfig
|
||||
from .llms.ollama_chat import OllamaChatConfig
|
||||
from .llms.maritalk import MaritTalkConfig
|
||||
|
|
|
@ -182,7 +182,7 @@ def get_supported_openai_params( # noqa: PLR0915
|
|||
elif request_type == "embeddings":
|
||||
return litellm.VertexAITextEmbeddingConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "sagemaker":
|
||||
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
|
||||
return litellm.SagemakerConfig().get_supported_openai_params(model=model)
|
||||
elif custom_llm_provider == "aleph_alpha":
|
||||
return [
|
||||
"max_tokens",
|
||||
|
|
|
@ -182,7 +182,11 @@ class OpenAIGPTConfig(BaseConfig):
|
|||
Returns:
|
||||
dict: The transformed request. Sent as the body of the API call.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
return {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
|
|
|
@ -34,7 +34,7 @@ class BaseLLMException(Exception):
|
|||
self,
|
||||
status_code: int,
|
||||
message: str,
|
||||
headers: Optional[Union[Dict, httpx.Headers]] = None,
|
||||
headers: Optional[Union[httpx.Headers, Dict]] = None,
|
||||
request: Optional[httpx.Request] = None,
|
||||
response: Optional[httpx.Response] = None,
|
||||
):
|
||||
|
|
179
litellm/llms/sagemaker/chat/handler.py
Normal file
179
litellm/llms/sagemaker/chat/handler.py
Normal file
|
@ -0,0 +1,179 @@
|
|||
import json
|
||||
from copy import deepcopy
|
||||
from typing import Any, Callable, Dict, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm.utils import ModelResponse, get_secret
|
||||
|
||||
from ...base_aws_llm import BaseAWSLLM
|
||||
from ...prompt_templates.factory import custom_prompt, prompt_factory
|
||||
from ..common_utils import AWSEventStreamDecoder
|
||||
from .transformation import SagemakerChatConfig
|
||||
|
||||
|
||||
class SagemakerChatHandler(BaseAWSLLM):
|
||||
|
||||
def _load_credentials(
|
||||
self,
|
||||
optional_params: dict,
|
||||
):
|
||||
try:
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
## CREDENTIALS ##
|
||||
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
|
||||
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||
aws_session_token = optional_params.pop("aws_session_token", None)
|
||||
aws_region_name = optional_params.pop("aws_region_name", None)
|
||||
aws_role_name = optional_params.pop("aws_role_name", None)
|
||||
aws_session_name = optional_params.pop("aws_session_name", None)
|
||||
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
||||
optional_params.pop(
|
||||
"aws_bedrock_runtime_endpoint", None
|
||||
) # https://bedrock-runtime.{region_name}.amazonaws.com
|
||||
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
||||
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
|
||||
|
||||
### SET REGION NAME ###
|
||||
if aws_region_name is None:
|
||||
# check env #
|
||||
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
|
||||
|
||||
if litellm_aws_region_name is not None and isinstance(
|
||||
litellm_aws_region_name, str
|
||||
):
|
||||
aws_region_name = litellm_aws_region_name
|
||||
|
||||
standard_aws_region_name = get_secret("AWS_REGION", None)
|
||||
if standard_aws_region_name is not None and isinstance(
|
||||
standard_aws_region_name, str
|
||||
):
|
||||
aws_region_name = standard_aws_region_name
|
||||
|
||||
if aws_region_name is None:
|
||||
aws_region_name = "us-west-2"
|
||||
|
||||
credentials: Credentials = self.get_credentials(
|
||||
aws_access_key_id=aws_access_key_id,
|
||||
aws_secret_access_key=aws_secret_access_key,
|
||||
aws_session_token=aws_session_token,
|
||||
aws_region_name=aws_region_name,
|
||||
aws_session_name=aws_session_name,
|
||||
aws_profile_name=aws_profile_name,
|
||||
aws_role_name=aws_role_name,
|
||||
aws_web_identity_token=aws_web_identity_token,
|
||||
aws_sts_endpoint=aws_sts_endpoint,
|
||||
)
|
||||
return credentials, aws_region_name
|
||||
|
||||
def _prepare_request(
|
||||
self,
|
||||
credentials,
|
||||
model: str,
|
||||
data: dict,
|
||||
optional_params: dict,
|
||||
aws_region_name: str,
|
||||
extra_headers: Optional[dict] = None,
|
||||
):
|
||||
try:
|
||||
import boto3
|
||||
from botocore.auth import SigV4Auth
|
||||
from botocore.awsrequest import AWSRequest
|
||||
from botocore.credentials import Credentials
|
||||
except ImportError:
|
||||
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||
|
||||
sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
|
||||
if optional_params.get("stream") is True:
|
||||
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
|
||||
else:
|
||||
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations"
|
||||
|
||||
sagemaker_base_url = optional_params.get("sagemaker_base_url", None)
|
||||
if sagemaker_base_url is not None:
|
||||
api_base = sagemaker_base_url
|
||||
|
||||
encoded_data = json.dumps(data).encode("utf-8")
|
||||
headers = {"Content-Type": "application/json"}
|
||||
if extra_headers is not None:
|
||||
headers = {"Content-Type": "application/json", **extra_headers}
|
||||
request = AWSRequest(
|
||||
method="POST", url=api_base, data=encoded_data, headers=headers
|
||||
)
|
||||
sigv4.add_auth(request)
|
||||
if (
|
||||
extra_headers is not None and "Authorization" in extra_headers
|
||||
): # prevent sigv4 from overwriting the auth header
|
||||
request.headers["Authorization"] = extra_headers["Authorization"]
|
||||
|
||||
prepped_request = request.prepare()
|
||||
|
||||
return prepped_request
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
custom_prompt_dict={},
|
||||
logger_fn=None,
|
||||
acompletion: bool = False,
|
||||
headers: dict = {},
|
||||
):
|
||||
|
||||
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
|
||||
credentials, aws_region_name = self._load_credentials(optional_params)
|
||||
inference_params = deepcopy(optional_params)
|
||||
stream = inference_params.pop("stream", None)
|
||||
|
||||
from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler
|
||||
|
||||
openai_like_chat_completions = OpenAILikeChatHandler()
|
||||
inference_params["stream"] = True if stream is True else False
|
||||
_data = SagemakerChatConfig().transform_request(
|
||||
model=model,
|
||||
messages=messages,
|
||||
optional_params=inference_params,
|
||||
litellm_params=litellm_params,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
prepared_request = self._prepare_request(
|
||||
model=model,
|
||||
data=_data,
|
||||
optional_params=optional_params,
|
||||
credentials=credentials,
|
||||
aws_region_name=aws_region_name,
|
||||
)
|
||||
|
||||
custom_stream_decoder = AWSEventStreamDecoder(model="", is_messages_api=True)
|
||||
|
||||
return openai_like_chat_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=prepared_request.url,
|
||||
api_key=None,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=inference_params,
|
||||
acompletion=acompletion,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
timeout=timeout,
|
||||
encoding=encoding,
|
||||
headers=prepared_request.headers, # type: ignore
|
||||
custom_endpoint=True,
|
||||
custom_llm_provider="sagemaker_chat",
|
||||
streaming_decoder=custom_stream_decoder, # type: ignore
|
||||
)
|
26
litellm/llms/sagemaker/chat/transformation.py
Normal file
26
litellm/llms/sagemaker/chat/transformation.py
Normal file
|
@ -0,0 +1,26 @@
|
|||
"""
|
||||
Translate from OpenAI's `/v1/chat/completions` to Sagemaker's `/invocations` API
|
||||
|
||||
Called if Sagemaker endpoint supports HF Messages API.
|
||||
|
||||
LiteLLM Docs: https://docs.litellm.ai/docs/providers/aws_sagemaker#sagemaker-messages-api
|
||||
Huggingface Docs: https://huggingface.co/docs/text-generation-inference/en/messages_api
|
||||
"""
|
||||
|
||||
from typing import Union
|
||||
|
||||
from httpx._models import Headers
|
||||
|
||||
from litellm.llms.base_llm.transformation import BaseLLMException
|
||||
|
||||
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
|
||||
from ..common_utils import SagemakerError
|
||||
|
||||
|
||||
class SagemakerChatConfig(OpenAIGPTConfig):
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, Headers]
|
||||
) -> BaseLLMException:
|
||||
return SagemakerError(
|
||||
status_code=status_code, message=error_message, headers=headers
|
||||
)
|
198
litellm/llms/sagemaker/common_utils.py
Normal file
198
litellm/llms/sagemaker/common_utils.py
Normal file
|
@ -0,0 +1,198 @@
|
|||
import json
|
||||
from typing import AsyncIterator, Iterator, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
from litellm import verbose_logger
|
||||
from litellm.llms.base_llm.transformation import BaseLLMException
|
||||
from litellm.types.utils import GenericStreamingChunk as GChunk
|
||||
from litellm.types.utils import StreamingChatCompletionChunk
|
||||
|
||||
_response_stream_shape_cache = None
|
||||
|
||||
|
||||
class SagemakerError(BaseLLMException):
|
||||
def __init__(
|
||||
self,
|
||||
status_code: int,
|
||||
message: str,
|
||||
headers: Optional[Union[dict, httpx.Headers]] = None,
|
||||
):
|
||||
super().__init__(status_code=status_code, message=message, headers=headers)
|
||||
|
||||
|
||||
class AWSEventStreamDecoder:
|
||||
def __init__(self, model: str, is_messages_api: Optional[bool] = None) -> None:
|
||||
from botocore.parsers import EventStreamJSONParser
|
||||
|
||||
self.model = model
|
||||
self.parser = EventStreamJSONParser()
|
||||
self.content_blocks: List = []
|
||||
self.is_messages_api = is_messages_api
|
||||
|
||||
def _chunk_parser_messages_api(
|
||||
self, chunk_data: dict
|
||||
) -> StreamingChatCompletionChunk:
|
||||
|
||||
openai_chunk = StreamingChatCompletionChunk(**chunk_data)
|
||||
|
||||
return openai_chunk
|
||||
|
||||
def _chunk_parser(self, chunk_data: dict) -> GChunk:
|
||||
verbose_logger.debug("in sagemaker chunk parser, chunk_data %s", chunk_data)
|
||||
_token = chunk_data.get("token", {}) or {}
|
||||
_index = chunk_data.get("index", None) or 0
|
||||
is_finished = False
|
||||
finish_reason = ""
|
||||
|
||||
_text = _token.get("text", "")
|
||||
if _text == "<|endoftext|>":
|
||||
return GChunk(
|
||||
text="",
|
||||
index=_index,
|
||||
is_finished=True,
|
||||
finish_reason="stop",
|
||||
usage=None,
|
||||
)
|
||||
|
||||
return GChunk(
|
||||
text=_text,
|
||||
index=_index,
|
||||
is_finished=is_finished,
|
||||
finish_reason=finish_reason,
|
||||
usage=None,
|
||||
)
|
||||
|
||||
def iter_bytes(
|
||||
self, iterator: Iterator[bytes]
|
||||
) -> Iterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
|
||||
"""Given an iterator that yields lines, iterate over it & yield every event encountered"""
|
||||
from botocore.eventstream import EventStreamBuffer
|
||||
|
||||
event_stream_buffer = EventStreamBuffer()
|
||||
accumulated_json = ""
|
||||
|
||||
for chunk in iterator:
|
||||
event_stream_buffer.add_data(chunk)
|
||||
for event in event_stream_buffer:
|
||||
message = self._parse_message_from_event(event)
|
||||
if message:
|
||||
# remove data: prefix and "\n\n" at the end
|
||||
message = message.replace("data:", "").replace("\n\n", "")
|
||||
|
||||
# Accumulate JSON data
|
||||
accumulated_json += message
|
||||
|
||||
# Try to parse the accumulated JSON
|
||||
try:
|
||||
_data = json.loads(accumulated_json)
|
||||
if self.is_messages_api:
|
||||
yield self._chunk_parser_messages_api(chunk_data=_data)
|
||||
else:
|
||||
yield self._chunk_parser(chunk_data=_data)
|
||||
# Reset accumulated_json after successful parsing
|
||||
accumulated_json = ""
|
||||
except json.JSONDecodeError:
|
||||
# If it's not valid JSON yet, continue to the next event
|
||||
continue
|
||||
|
||||
# Handle any remaining data after the iterator is exhausted
|
||||
if accumulated_json:
|
||||
try:
|
||||
_data = json.loads(accumulated_json)
|
||||
if self.is_messages_api:
|
||||
yield self._chunk_parser_messages_api(chunk_data=_data)
|
||||
else:
|
||||
yield self._chunk_parser(chunk_data=_data)
|
||||
except json.JSONDecodeError:
|
||||
# Handle or log any unparseable data at the end
|
||||
verbose_logger.error(
|
||||
f"Warning: Unparseable JSON data remained: {accumulated_json}"
|
||||
)
|
||||
yield None
|
||||
|
||||
async def aiter_bytes(
|
||||
self, iterator: AsyncIterator[bytes]
|
||||
) -> AsyncIterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
|
||||
"""Given an async iterator that yields lines, iterate over it & yield every event encountered"""
|
||||
from botocore.eventstream import EventStreamBuffer
|
||||
|
||||
event_stream_buffer = EventStreamBuffer()
|
||||
accumulated_json = ""
|
||||
|
||||
async for chunk in iterator:
|
||||
event_stream_buffer.add_data(chunk)
|
||||
for event in event_stream_buffer:
|
||||
message = self._parse_message_from_event(event)
|
||||
if message:
|
||||
verbose_logger.debug("sagemaker parsed chunk bytes %s", message)
|
||||
# remove data: prefix and "\n\n" at the end
|
||||
message = message.replace("data:", "").replace("\n\n", "")
|
||||
|
||||
# Accumulate JSON data
|
||||
accumulated_json += message
|
||||
|
||||
# Try to parse the accumulated JSON
|
||||
try:
|
||||
_data = json.loads(accumulated_json)
|
||||
if self.is_messages_api:
|
||||
yield self._chunk_parser_messages_api(chunk_data=_data)
|
||||
else:
|
||||
yield self._chunk_parser(chunk_data=_data)
|
||||
# Reset accumulated_json after successful parsing
|
||||
accumulated_json = ""
|
||||
except json.JSONDecodeError:
|
||||
# If it's not valid JSON yet, continue to the next event
|
||||
continue
|
||||
|
||||
# Handle any remaining data after the iterator is exhausted
|
||||
if accumulated_json:
|
||||
try:
|
||||
_data = json.loads(accumulated_json)
|
||||
if self.is_messages_api:
|
||||
yield self._chunk_parser_messages_api(chunk_data=_data)
|
||||
else:
|
||||
yield self._chunk_parser(chunk_data=_data)
|
||||
except json.JSONDecodeError:
|
||||
# Handle or log any unparseable data at the end
|
||||
verbose_logger.error(
|
||||
f"Warning: Unparseable JSON data remained: {accumulated_json}"
|
||||
)
|
||||
yield None
|
||||
|
||||
def _parse_message_from_event(self, event) -> Optional[str]:
|
||||
response_dict = event.to_response_dict()
|
||||
parsed_response = self.parser.parse(response_dict, get_response_stream_shape())
|
||||
|
||||
if response_dict["status_code"] != 200:
|
||||
raise ValueError(f"Bad response code, expected 200: {response_dict}")
|
||||
|
||||
if "chunk" in parsed_response:
|
||||
chunk = parsed_response.get("chunk")
|
||||
if not chunk:
|
||||
return None
|
||||
return chunk.get("bytes").decode() # type: ignore[no-any-return]
|
||||
else:
|
||||
chunk = response_dict.get("body")
|
||||
if not chunk:
|
||||
return None
|
||||
|
||||
return chunk.decode() # type: ignore[no-any-return]
|
||||
|
||||
|
||||
def get_response_stream_shape():
|
||||
global _response_stream_shape_cache
|
||||
if _response_stream_shape_cache is None:
|
||||
|
||||
from botocore.loaders import Loader
|
||||
from botocore.model import ServiceModel
|
||||
|
||||
loader = Loader()
|
||||
sagemaker_service_dict = loader.load_service_model(
|
||||
"sagemaker-runtime", "service-2"
|
||||
)
|
||||
sagemaker_service_model = ServiceModel(sagemaker_service_dict)
|
||||
_response_stream_shape_cache = sagemaker_service_model.shape_for(
|
||||
"InvokeEndpointWithResponseStreamOutput"
|
||||
)
|
||||
return _response_stream_shape_cache
|
|
@ -22,12 +22,7 @@ from litellm.llms.custom_httpx.http_handler import (
|
|||
_get_httpx_client,
|
||||
get_async_httpx_client,
|
||||
)
|
||||
from litellm.types.llms.openai import (
|
||||
ChatCompletionToolCallChunk,
|
||||
ChatCompletionUsageBlock,
|
||||
)
|
||||
from litellm.types.utils import GenericStreamingChunk as GChunk
|
||||
from litellm.types.utils import StreamingChatCompletionChunk
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.utils import (
|
||||
CustomStreamWrapper,
|
||||
EmbeddingResponse,
|
||||
|
@ -36,65 +31,12 @@ from litellm.utils import (
|
|||
get_secret,
|
||||
)
|
||||
|
||||
from ..base_aws_llm import BaseAWSLLM
|
||||
from ..prompt_templates.factory import custom_prompt, prompt_factory
|
||||
|
||||
_response_stream_shape_cache = None
|
||||
|
||||
|
||||
class SagemakerError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(
|
||||
method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker"
|
||||
)
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class SagemakerConfig:
|
||||
"""
|
||||
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
|
||||
"""
|
||||
|
||||
max_new_tokens: Optional[int] = None
|
||||
top_p: Optional[float] = None
|
||||
temperature: Optional[float] = None
|
||||
return_full_text: Optional[bool] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_new_tokens: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
temperature: Optional[float] = None,
|
||||
return_full_text: Optional[bool] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
from ...base_aws_llm import BaseAWSLLM
|
||||
from ...prompt_templates.factory import custom_prompt, prompt_factory
|
||||
from ..common_utils import AWSEventStreamDecoder, SagemakerError
|
||||
from .transformation import SagemakerConfig
|
||||
|
||||
sagemaker_config = SagemakerConfig()
|
||||
|
||||
"""
|
||||
SAGEMAKER AUTH Keys/Vars
|
||||
|
@ -166,6 +108,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
credentials,
|
||||
model: str,
|
||||
data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
aws_region_name: str,
|
||||
extra_headers: Optional[dict] = None,
|
||||
|
@ -189,9 +132,12 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
api_base = sagemaker_base_url
|
||||
|
||||
encoded_data = json.dumps(data).encode("utf-8")
|
||||
headers = {"Content-Type": "application/json"}
|
||||
if extra_headers is not None:
|
||||
headers = {"Content-Type": "application/json", **extra_headers}
|
||||
headers = sagemaker_config.validate_environment(
|
||||
headers=extra_headers,
|
||||
model=model,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
)
|
||||
request = AWSRequest(
|
||||
method="POST", url=api_base, data=encoded_data, headers=headers
|
||||
)
|
||||
|
@ -205,49 +151,6 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
|
||||
return prepped_request
|
||||
|
||||
def _transform_prompt(
|
||||
self,
|
||||
model: str,
|
||||
messages: List,
|
||||
custom_prompt_dict: dict,
|
||||
hf_model_name: Optional[str],
|
||||
) -> str:
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details.get("roles", None),
|
||||
initial_prompt_value=model_prompt_details.get(
|
||||
"initial_prompt_value", ""
|
||||
),
|
||||
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
||||
messages=messages,
|
||||
)
|
||||
elif hf_model_name in custom_prompt_dict:
|
||||
# check if the base huggingface model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[hf_model_name]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details.get("roles", None),
|
||||
initial_prompt_value=model_prompt_details.get(
|
||||
"initial_prompt_value", ""
|
||||
),
|
||||
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
if hf_model_name is None:
|
||||
if "llama-2" in model.lower(): # llama-2 model
|
||||
if "chat" in model.lower(): # apply llama2 chat template
|
||||
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
|
||||
else: # apply regular llama2 template
|
||||
hf_model_name = "meta-llama/Llama-2-7b"
|
||||
hf_model_name = (
|
||||
hf_model_name or model
|
||||
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
|
||||
prompt: str = prompt_factory(model=hf_model_name, messages=messages) # type: ignore
|
||||
|
||||
return prompt
|
||||
|
||||
def completion( # noqa: PLR0915
|
||||
self,
|
||||
model: str,
|
||||
|
@ -257,13 +160,13 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
encoding,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
||||
custom_prompt_dict={},
|
||||
hf_model_name=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
acompletion: bool = False,
|
||||
use_messages_api: Optional[bool] = None,
|
||||
headers: dict = {},
|
||||
):
|
||||
|
||||
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
|
||||
|
@ -272,50 +175,6 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
stream = inference_params.pop("stream", None)
|
||||
model_id = optional_params.get("model_id", None)
|
||||
|
||||
if use_messages_api is True:
|
||||
from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler
|
||||
|
||||
openai_like_chat_completions = OpenAILikeChatHandler()
|
||||
inference_params["stream"] = True if stream is True else False
|
||||
_data: Dict[str, Any] = {
|
||||
"model": model,
|
||||
"messages": messages,
|
||||
**inference_params,
|
||||
}
|
||||
|
||||
prepared_request = self._prepare_request(
|
||||
model=model,
|
||||
data=_data,
|
||||
optional_params=optional_params,
|
||||
credentials=credentials,
|
||||
aws_region_name=aws_region_name,
|
||||
)
|
||||
|
||||
custom_stream_decoder = AWSEventStreamDecoder(
|
||||
model="", is_messages_api=True
|
||||
)
|
||||
|
||||
return openai_like_chat_completions.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=prepared_request.url,
|
||||
api_key=None,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=inference_params,
|
||||
acompletion=acompletion,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
timeout=timeout,
|
||||
encoding=encoding,
|
||||
headers=prepared_request.headers, # type: ignore
|
||||
custom_endpoint=True,
|
||||
custom_llm_provider="sagemaker_chat",
|
||||
streaming_decoder=custom_stream_decoder, # type: ignore
|
||||
)
|
||||
|
||||
## Load Config
|
||||
config = litellm.SagemakerConfig.get_config()
|
||||
for k, v in config.items():
|
||||
|
@ -325,21 +184,6 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
inference_params[k] = v
|
||||
|
||||
if stream is True:
|
||||
data = {"parameters": inference_params, "stream": True}
|
||||
prepared_request = self._prepare_request(
|
||||
model=model,
|
||||
data=data,
|
||||
optional_params=optional_params,
|
||||
credentials=credentials,
|
||||
aws_region_name=aws_region_name,
|
||||
)
|
||||
if model_id is not None:
|
||||
# Add model_id as InferenceComponentName header
|
||||
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
|
||||
prepared_request.headers.update(
|
||||
{"X-Amzn-SageMaker-Inference-Component": model_id}
|
||||
)
|
||||
|
||||
if acompletion is True:
|
||||
response = self.async_streaming(
|
||||
messages=messages,
|
||||
|
@ -350,23 +194,25 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
encoding=encoding,
|
||||
model_response=model_response,
|
||||
logging_obj=logging_obj,
|
||||
data=data,
|
||||
model_id=model_id,
|
||||
aws_region_name=aws_region_name,
|
||||
credentials=credentials,
|
||||
headers=headers,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
return response
|
||||
else:
|
||||
prompt = self._transform_prompt(
|
||||
data = sagemaker_config.transform_request(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
hf_model_name=hf_model_name,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
headers=headers,
|
||||
)
|
||||
data["inputs"] = prompt
|
||||
prepared_request = self._prepare_request(
|
||||
model=model,
|
||||
data=data,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
credentials=credentials,
|
||||
aws_region_name=aws_region_name,
|
||||
|
@ -388,7 +234,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
if sync_response.status_code != 200:
|
||||
raise SagemakerError(
|
||||
status_code=sync_response.status_code,
|
||||
message=sync_response.read(),
|
||||
message=str(sync_response.read()),
|
||||
)
|
||||
|
||||
decoder = AWSEventStreamDecoder(model="")
|
||||
|
@ -413,14 +259,6 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
return streaming_response
|
||||
|
||||
# Non-Streaming Requests
|
||||
_data = {"parameters": inference_params}
|
||||
prepared_request_args = {
|
||||
"model": model,
|
||||
"data": _data,
|
||||
"optional_params": optional_params,
|
||||
"credentials": credentials,
|
||||
"aws_region_name": aws_region_name,
|
||||
}
|
||||
|
||||
# Async completion
|
||||
if acompletion is True:
|
||||
|
@ -432,21 +270,30 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
model_response=model_response,
|
||||
encoding=encoding,
|
||||
logging_obj=logging_obj,
|
||||
data=_data,
|
||||
model_id=model_id,
|
||||
optional_params=optional_params,
|
||||
credentials=credentials,
|
||||
aws_region_name=aws_region_name,
|
||||
headers=headers,
|
||||
litellm_params=litellm_params,
|
||||
)
|
||||
|
||||
prompt = self._transform_prompt(
|
||||
## Non-Streaming completion CALL
|
||||
_data = sagemaker_config.transform_request(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
hf_model_name=hf_model_name,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
headers=headers,
|
||||
)
|
||||
_data["inputs"] = prompt
|
||||
## Non-Streaming completion CALL
|
||||
prepared_request_args = {
|
||||
"model": model,
|
||||
"data": _data,
|
||||
"optional_params": optional_params,
|
||||
"credentials": credentials,
|
||||
"aws_region_name": aws_region_name,
|
||||
"messages": messages,
|
||||
}
|
||||
prepared_request = self._prepare_request(**prepared_request_args)
|
||||
try:
|
||||
if model_id is not None:
|
||||
|
@ -507,53 +354,16 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
|
||||
raise SagemakerError(status_code=status_code, message=error_message)
|
||||
|
||||
completion_response = sync_response.json()
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=completion_response,
|
||||
additional_args={"complete_input_dict": _data},
|
||||
return sagemaker_config.transform_response(
|
||||
model=model,
|
||||
raw_response=sync_response,
|
||||
model_response=model_response,
|
||||
logging_obj=logging_obj,
|
||||
request_data=_data,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
encoding=encoding,
|
||||
)
|
||||
print_verbose(f"raw model_response: {completion_response}")
|
||||
## RESPONSE OBJECT
|
||||
try:
|
||||
if isinstance(completion_response, list):
|
||||
completion_response_choices = completion_response[0]
|
||||
else:
|
||||
completion_response_choices = completion_response
|
||||
completion_output = ""
|
||||
if "generation" in completion_response_choices:
|
||||
completion_output += completion_response_choices["generation"]
|
||||
elif "generated_text" in completion_response_choices:
|
||||
completion_output += completion_response_choices["generated_text"]
|
||||
|
||||
# check if the prompt template is part of output, if so - filter it out
|
||||
if completion_output.startswith(prompt) and "<s>" in prompt:
|
||||
completion_output = completion_output.replace(prompt, "", 1)
|
||||
|
||||
model_response.choices[0].message.content = completion_output # type: ignore
|
||||
except Exception:
|
||||
raise SagemakerError(
|
||||
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
async def make_async_call(
|
||||
self,
|
||||
|
@ -605,7 +415,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
|
||||
async def async_streaming(
|
||||
self,
|
||||
messages: list,
|
||||
messages: List[AllMessageValues],
|
||||
model: str,
|
||||
custom_prompt_dict: dict,
|
||||
hf_model_name: Optional[str],
|
||||
|
@ -616,13 +426,15 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
model_response: ModelResponse,
|
||||
model_id: Optional[str],
|
||||
logging_obj: Any,
|
||||
data,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
):
|
||||
data["inputs"] = self._transform_prompt(
|
||||
data = await sagemaker_config.async_transform_request(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
hf_model_name=hf_model_name,
|
||||
optional_params={**optional_params, "stream": True},
|
||||
litellm_params=litellm_params,
|
||||
headers=headers,
|
||||
)
|
||||
asyncified_prepare_request = asyncify(self._prepare_request)
|
||||
prepared_request_args = {
|
||||
|
@ -631,6 +443,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
"optional_params": optional_params,
|
||||
"credentials": credentials,
|
||||
"aws_region_name": aws_region_name,
|
||||
"messages": messages,
|
||||
}
|
||||
prepared_request = await asyncified_prepare_request(**prepared_request_args)
|
||||
completion_stream = await self.make_async_call(
|
||||
|
@ -658,7 +471,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
|
||||
async def async_completion(
|
||||
self,
|
||||
messages: list,
|
||||
messages: List[AllMessageValues],
|
||||
model: str,
|
||||
custom_prompt_dict: dict,
|
||||
hf_model_name: Optional[str],
|
||||
|
@ -668,22 +481,23 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
model_response: ModelResponse,
|
||||
optional_params: dict,
|
||||
logging_obj: Any,
|
||||
data: dict,
|
||||
model_id: Optional[str],
|
||||
headers: dict,
|
||||
litellm_params: dict,
|
||||
):
|
||||
timeout = 300.0
|
||||
async_handler = get_async_httpx_client(
|
||||
llm_provider=litellm.LlmProviders.SAGEMAKER
|
||||
)
|
||||
|
||||
async_transform_prompt = asyncify(self._transform_prompt)
|
||||
|
||||
data["inputs"] = await async_transform_prompt(
|
||||
data = await sagemaker_config.async_transform_request(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
hf_model_name=hf_model_name,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
asyncified_prepare_request = asyncify(self._prepare_request)
|
||||
prepared_request_args = {
|
||||
"model": model,
|
||||
|
@ -691,6 +505,7 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
"optional_params": optional_params,
|
||||
"credentials": credentials,
|
||||
"aws_region_name": aws_region_name,
|
||||
"messages": messages,
|
||||
}
|
||||
|
||||
prepared_request = await asyncified_prepare_request(**prepared_request_args)
|
||||
|
@ -738,52 +553,16 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
if "Inference Component Name header is required" in error_message:
|
||||
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
|
||||
raise SagemakerError(status_code=500, message=error_message)
|
||||
completion_response = response.json()
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=data["inputs"],
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
return sagemaker_config.transform_response(
|
||||
model=model,
|
||||
raw_response=response,
|
||||
model_response=model_response,
|
||||
logging_obj=logging_obj,
|
||||
request_data=data,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
encoding=encoding,
|
||||
)
|
||||
## RESPONSE OBJECT
|
||||
try:
|
||||
if isinstance(completion_response, list):
|
||||
completion_response_choices = completion_response[0]
|
||||
else:
|
||||
completion_response_choices = completion_response
|
||||
completion_output = ""
|
||||
if "generation" in completion_response_choices:
|
||||
completion_output += completion_response_choices["generation"]
|
||||
elif "generated_text" in completion_response_choices:
|
||||
completion_output += completion_response_choices["generated_text"]
|
||||
|
||||
# check if the prompt template is part of output, if so - filter it out
|
||||
if completion_output.startswith(data["inputs"]) and "<s>" in data["inputs"]:
|
||||
completion_output = completion_output.replace(data["inputs"], "", 1)
|
||||
|
||||
model_response.choices[0].message.content = completion_output # type: ignore
|
||||
except Exception:
|
||||
raise SagemakerError(
|
||||
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(encoding.encode(data["inputs"]))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
def embedding(
|
||||
self,
|
||||
|
@ -928,180 +707,3 @@ class SagemakerLLM(BaseAWSLLM):
|
|||
)
|
||||
|
||||
return model_response
|
||||
|
||||
|
||||
def get_response_stream_shape():
|
||||
global _response_stream_shape_cache
|
||||
if _response_stream_shape_cache is None:
|
||||
|
||||
from botocore.loaders import Loader
|
||||
from botocore.model import ServiceModel
|
||||
|
||||
loader = Loader()
|
||||
sagemaker_service_dict = loader.load_service_model(
|
||||
"sagemaker-runtime", "service-2"
|
||||
)
|
||||
sagemaker_service_model = ServiceModel(sagemaker_service_dict)
|
||||
_response_stream_shape_cache = sagemaker_service_model.shape_for(
|
||||
"InvokeEndpointWithResponseStreamOutput"
|
||||
)
|
||||
return _response_stream_shape_cache
|
||||
|
||||
|
||||
class AWSEventStreamDecoder:
|
||||
def __init__(self, model: str, is_messages_api: Optional[bool] = None) -> None:
|
||||
from botocore.parsers import EventStreamJSONParser
|
||||
|
||||
self.model = model
|
||||
self.parser = EventStreamJSONParser()
|
||||
self.content_blocks: List = []
|
||||
self.is_messages_api = is_messages_api
|
||||
|
||||
def _chunk_parser_messages_api(
|
||||
self, chunk_data: dict
|
||||
) -> StreamingChatCompletionChunk:
|
||||
|
||||
openai_chunk = StreamingChatCompletionChunk(**chunk_data)
|
||||
|
||||
return openai_chunk
|
||||
|
||||
def _chunk_parser(self, chunk_data: dict) -> GChunk:
|
||||
verbose_logger.debug("in sagemaker chunk parser, chunk_data %s", chunk_data)
|
||||
_token = chunk_data.get("token", {}) or {}
|
||||
_index = chunk_data.get("index", None) or 0
|
||||
is_finished = False
|
||||
finish_reason = ""
|
||||
|
||||
_text = _token.get("text", "")
|
||||
if _text == "<|endoftext|>":
|
||||
return GChunk(
|
||||
text="",
|
||||
index=_index,
|
||||
is_finished=True,
|
||||
finish_reason="stop",
|
||||
usage=None,
|
||||
)
|
||||
|
||||
return GChunk(
|
||||
text=_text,
|
||||
index=_index,
|
||||
is_finished=is_finished,
|
||||
finish_reason=finish_reason,
|
||||
usage=None,
|
||||
)
|
||||
|
||||
def iter_bytes(
|
||||
self, iterator: Iterator[bytes]
|
||||
) -> Iterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
|
||||
"""Given an iterator that yields lines, iterate over it & yield every event encountered"""
|
||||
from botocore.eventstream import EventStreamBuffer
|
||||
|
||||
event_stream_buffer = EventStreamBuffer()
|
||||
accumulated_json = ""
|
||||
|
||||
for chunk in iterator:
|
||||
event_stream_buffer.add_data(chunk)
|
||||
for event in event_stream_buffer:
|
||||
message = self._parse_message_from_event(event)
|
||||
if message:
|
||||
# remove data: prefix and "\n\n" at the end
|
||||
message = message.replace("data:", "").replace("\n\n", "")
|
||||
|
||||
# Accumulate JSON data
|
||||
accumulated_json += message
|
||||
|
||||
# Try to parse the accumulated JSON
|
||||
try:
|
||||
_data = json.loads(accumulated_json)
|
||||
if self.is_messages_api:
|
||||
yield self._chunk_parser_messages_api(chunk_data=_data)
|
||||
else:
|
||||
yield self._chunk_parser(chunk_data=_data)
|
||||
# Reset accumulated_json after successful parsing
|
||||
accumulated_json = ""
|
||||
except json.JSONDecodeError:
|
||||
# If it's not valid JSON yet, continue to the next event
|
||||
continue
|
||||
|
||||
# Handle any remaining data after the iterator is exhausted
|
||||
if accumulated_json:
|
||||
try:
|
||||
_data = json.loads(accumulated_json)
|
||||
if self.is_messages_api:
|
||||
yield self._chunk_parser_messages_api(chunk_data=_data)
|
||||
else:
|
||||
yield self._chunk_parser(chunk_data=_data)
|
||||
except json.JSONDecodeError:
|
||||
# Handle or log any unparseable data at the end
|
||||
verbose_logger.error(
|
||||
f"Warning: Unparseable JSON data remained: {accumulated_json}"
|
||||
)
|
||||
yield None
|
||||
|
||||
async def aiter_bytes(
|
||||
self, iterator: AsyncIterator[bytes]
|
||||
) -> AsyncIterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
|
||||
"""Given an async iterator that yields lines, iterate over it & yield every event encountered"""
|
||||
from botocore.eventstream import EventStreamBuffer
|
||||
|
||||
event_stream_buffer = EventStreamBuffer()
|
||||
accumulated_json = ""
|
||||
|
||||
async for chunk in iterator:
|
||||
event_stream_buffer.add_data(chunk)
|
||||
for event in event_stream_buffer:
|
||||
message = self._parse_message_from_event(event)
|
||||
if message:
|
||||
verbose_logger.debug("sagemaker parsed chunk bytes %s", message)
|
||||
# remove data: prefix and "\n\n" at the end
|
||||
message = message.replace("data:", "").replace("\n\n", "")
|
||||
|
||||
# Accumulate JSON data
|
||||
accumulated_json += message
|
||||
|
||||
# Try to parse the accumulated JSON
|
||||
try:
|
||||
_data = json.loads(accumulated_json)
|
||||
if self.is_messages_api:
|
||||
yield self._chunk_parser_messages_api(chunk_data=_data)
|
||||
else:
|
||||
yield self._chunk_parser(chunk_data=_data)
|
||||
# Reset accumulated_json after successful parsing
|
||||
accumulated_json = ""
|
||||
except json.JSONDecodeError:
|
||||
# If it's not valid JSON yet, continue to the next event
|
||||
continue
|
||||
|
||||
# Handle any remaining data after the iterator is exhausted
|
||||
if accumulated_json:
|
||||
try:
|
||||
_data = json.loads(accumulated_json)
|
||||
if self.is_messages_api:
|
||||
yield self._chunk_parser_messages_api(chunk_data=_data)
|
||||
else:
|
||||
yield self._chunk_parser(chunk_data=_data)
|
||||
except json.JSONDecodeError:
|
||||
# Handle or log any unparseable data at the end
|
||||
verbose_logger.error(
|
||||
f"Warning: Unparseable JSON data remained: {accumulated_json}"
|
||||
)
|
||||
yield None
|
||||
|
||||
def _parse_message_from_event(self, event) -> Optional[str]:
|
||||
response_dict = event.to_response_dict()
|
||||
parsed_response = self.parser.parse(response_dict, get_response_stream_shape())
|
||||
|
||||
if response_dict["status_code"] != 200:
|
||||
raise ValueError(f"Bad response code, expected 200: {response_dict}")
|
||||
|
||||
if "chunk" in parsed_response:
|
||||
chunk = parsed_response.get("chunk")
|
||||
if not chunk:
|
||||
return None
|
||||
return chunk.get("bytes").decode() # type: ignore[no-any-return]
|
||||
else:
|
||||
chunk = response_dict.get("body")
|
||||
if not chunk:
|
||||
return None
|
||||
|
||||
return chunk.decode() # type: ignore[no-any-return]
|
272
litellm/llms/sagemaker/completion/transformation.py
Normal file
272
litellm/llms/sagemaker/completion/transformation.py
Normal file
|
@ -0,0 +1,272 @@
|
|||
"""
|
||||
Translate from OpenAI's `/v1/chat/completions` to Sagemaker's `/invoke`
|
||||
|
||||
In the Huggingface TGI format.
|
||||
"""
|
||||
|
||||
import json
|
||||
import time
|
||||
import types
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||||
|
||||
from httpx._models import Headers, Response
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.asyncify import asyncify
|
||||
from litellm.llms.base_llm.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.llms.prompt_templates.factory import custom_prompt, prompt_factory
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.utils import Usage
|
||||
|
||||
from ..common_utils import SagemakerError
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
||||
else:
|
||||
LiteLLMLoggingObj = Any
|
||||
|
||||
|
||||
class SagemakerConfig(BaseConfig):
|
||||
"""
|
||||
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
|
||||
"""
|
||||
|
||||
max_new_tokens: Optional[int] = None
|
||||
top_p: Optional[float] = None
|
||||
temperature: Optional[float] = None
|
||||
return_full_text: Optional[bool] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_new_tokens: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
temperature: Optional[float] = None,
|
||||
return_full_text: Optional[bool] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return super().get_config()
|
||||
|
||||
def _transform_messages(
|
||||
self,
|
||||
messages: List[AllMessageValues],
|
||||
) -> List[AllMessageValues]:
|
||||
return messages
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, Headers]
|
||||
) -> BaseLLMException:
|
||||
return SagemakerError(
|
||||
message=error_message, status_code=status_code, headers=headers
|
||||
)
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List:
|
||||
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for param, value in non_default_params.items():
|
||||
if param == "temperature":
|
||||
if value == 0.0 or value == 0:
|
||||
# hugging face exception raised when temp==0
|
||||
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
|
||||
if not non_default_params.get(
|
||||
"aws_sagemaker_allow_zero_temp", False
|
||||
):
|
||||
value = 0.01
|
||||
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
if param == "n":
|
||||
optional_params["best_of"] = value
|
||||
optional_params["do_sample"] = (
|
||||
True # Need to sample if you want best of for hf inference endpoints
|
||||
)
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
if param == "stop":
|
||||
optional_params["stop"] = value
|
||||
if param == "max_tokens":
|
||||
# HF TGI raises the following exception when max_new_tokens==0
|
||||
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
|
||||
if value == 0:
|
||||
value = 1
|
||||
optional_params["max_new_tokens"] = value
|
||||
non_default_params.pop("aws_sagemaker_allow_zero_temp", None)
|
||||
return optional_params
|
||||
|
||||
def _transform_prompt(
|
||||
self,
|
||||
model: str,
|
||||
messages: List,
|
||||
custom_prompt_dict: dict,
|
||||
hf_model_name: Optional[str],
|
||||
) -> str:
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details.get("roles", None),
|
||||
initial_prompt_value=model_prompt_details.get(
|
||||
"initial_prompt_value", ""
|
||||
),
|
||||
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
||||
messages=messages,
|
||||
)
|
||||
elif hf_model_name in custom_prompt_dict:
|
||||
# check if the base huggingface model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[hf_model_name]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details.get("roles", None),
|
||||
initial_prompt_value=model_prompt_details.get(
|
||||
"initial_prompt_value", ""
|
||||
),
|
||||
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
if hf_model_name is None:
|
||||
if "llama-2" in model.lower(): # llama-2 model
|
||||
if "chat" in model.lower(): # apply llama2 chat template
|
||||
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
|
||||
else: # apply regular llama2 template
|
||||
hf_model_name = "meta-llama/Llama-2-7b"
|
||||
hf_model_name = (
|
||||
hf_model_name or model
|
||||
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
|
||||
prompt: str = prompt_factory(model=hf_model_name, messages=messages) # type: ignore
|
||||
|
||||
return prompt
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
inference_params = optional_params.copy()
|
||||
stream = inference_params.pop("stream", False)
|
||||
data: Dict = {"parameters": inference_params}
|
||||
if stream is True:
|
||||
data["stream"] = True
|
||||
|
||||
custom_prompt_dict = (
|
||||
litellm_params.get("custom_prompt_dict", None) or litellm.custom_prompt_dict
|
||||
)
|
||||
|
||||
hf_model_name = litellm_params.get("hf_model_name", None)
|
||||
|
||||
prompt = self._transform_prompt(
|
||||
model=model,
|
||||
messages=messages,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
hf_model_name=hf_model_name,
|
||||
)
|
||||
data["inputs"] = prompt
|
||||
|
||||
return data
|
||||
|
||||
async def async_transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
return await asyncify(self.transform_request)(
|
||||
model, messages, optional_params, litellm_params, headers
|
||||
)
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: Response,
|
||||
model_response: litellm.ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
encoding: str,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> litellm.ModelResponse:
|
||||
completion_response = raw_response.json()
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=completion_response,
|
||||
additional_args={"complete_input_dict": request_data},
|
||||
)
|
||||
|
||||
prompt = request_data["inputs"]
|
||||
|
||||
## RESPONSE OBJECT
|
||||
try:
|
||||
if isinstance(completion_response, list):
|
||||
completion_response_choices = completion_response[0]
|
||||
else:
|
||||
completion_response_choices = completion_response
|
||||
completion_output = ""
|
||||
if "generation" in completion_response_choices:
|
||||
completion_output += completion_response_choices["generation"]
|
||||
elif "generated_text" in completion_response_choices:
|
||||
completion_output += completion_response_choices["generated_text"]
|
||||
|
||||
# check if the prompt template is part of output, if so - filter it out
|
||||
if completion_output.startswith(prompt) and "<s>" in prompt:
|
||||
completion_output = completion_output.replace(prompt, "", 1)
|
||||
|
||||
model_response.choices[0].message.content = completion_output # type: ignore
|
||||
except Exception:
|
||||
raise SagemakerError(
|
||||
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: Optional[dict],
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
) -> dict:
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
if headers is not None:
|
||||
headers = {"Content-Type": "application/json", **headers}
|
||||
|
||||
return headers
|
|
@ -130,7 +130,8 @@ from .llms.prompt_templates.factory import (
|
|||
prompt_factory,
|
||||
stringify_json_tool_call_content,
|
||||
)
|
||||
from .llms.sagemaker.sagemaker import SagemakerLLM
|
||||
from .llms.sagemaker.chat.handler import SagemakerChatHandler
|
||||
from .llms.sagemaker.completion.handler import SagemakerLLM
|
||||
from .llms.text_completion_codestral import CodestralTextCompletion
|
||||
from .llms.together_ai.completion.handler import TogetherAITextCompletion
|
||||
from .llms.triton import TritonChatCompletion
|
||||
|
@ -229,6 +230,7 @@ watsonx_chat_completion = WatsonXChatHandler()
|
|||
openai_like_embedding = OpenAILikeEmbeddingHandler()
|
||||
databricks_embedding = DatabricksEmbeddingHandler()
|
||||
base_llm_http_handler = BaseLLMHTTPHandler()
|
||||
sagemaker_chat_completion = SagemakerChatHandler()
|
||||
####### COMPLETION ENDPOINTS ################
|
||||
|
||||
|
||||
|
@ -1073,6 +1075,8 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
user_continue_message=kwargs.get("user_continue_message"),
|
||||
base_model=base_model,
|
||||
litellm_trace_id=kwargs.get("litellm_trace_id"),
|
||||
hf_model_name=hf_model_name,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
)
|
||||
logging.update_environment_variables(
|
||||
model=model,
|
||||
|
@ -2513,10 +2517,23 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
|
||||
## RESPONSE OBJECT
|
||||
response = model_response
|
||||
elif (
|
||||
custom_llm_provider == "sagemaker"
|
||||
or custom_llm_provider == "sagemaker_chat"
|
||||
):
|
||||
elif custom_llm_provider == "sagemaker_chat":
|
||||
# boto3 reads keys from .env
|
||||
response = sagemaker_chat_completion.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
logging_obj=logging,
|
||||
acompletion=acompletion,
|
||||
headers=headers or {},
|
||||
)
|
||||
elif custom_llm_provider == "sagemaker":
|
||||
# boto3 reads keys from .env
|
||||
model_response = sagemaker_llm.completion(
|
||||
model=model,
|
||||
|
@ -2531,16 +2548,6 @@ def completion( # type: ignore # noqa: PLR0915
|
|||
encoding=encoding,
|
||||
logging_obj=logging,
|
||||
acompletion=acompletion,
|
||||
use_messages_api=(
|
||||
True if custom_llm_provider == "sagemaker_chat" else False
|
||||
),
|
||||
)
|
||||
if optional_params.get("stream", False):
|
||||
## LOGGING
|
||||
logging.post_call(
|
||||
input=messages,
|
||||
api_key=None,
|
||||
original_response=model_response,
|
||||
)
|
||||
|
||||
## RESPONSE OBJECT
|
||||
|
|
|
@ -2076,6 +2076,8 @@ def get_litellm_params(
|
|||
user_continue_message=None,
|
||||
base_model=None,
|
||||
litellm_trace_id=None,
|
||||
hf_model_name: Optional[str] = None,
|
||||
custom_prompt_dict: Optional[dict] = None,
|
||||
):
|
||||
litellm_params = {
|
||||
"acompletion": acompletion,
|
||||
|
@ -2105,6 +2107,8 @@ def get_litellm_params(
|
|||
"base_model": base_model
|
||||
or _get_base_model_from_litellm_call_metadata(metadata=metadata),
|
||||
"litellm_trace_id": litellm_trace_id,
|
||||
"hf_model_name": hf_model_name,
|
||||
"custom_prompt_dict": custom_prompt_dict,
|
||||
}
|
||||
|
||||
return litellm_params
|
||||
|
@ -3145,31 +3149,16 @@ def get_optional_params( # noqa: PLR0915
|
|||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
|
||||
if temperature is not None:
|
||||
if temperature == 0.0 or temperature == 0:
|
||||
# hugging face exception raised when temp==0
|
||||
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
|
||||
if not passed_params.get("aws_sagemaker_allow_zero_temp", False):
|
||||
temperature = 0.01
|
||||
optional_params["temperature"] = temperature
|
||||
if top_p is not None:
|
||||
optional_params["top_p"] = top_p
|
||||
if n is not None:
|
||||
optional_params["best_of"] = n
|
||||
optional_params["do_sample"] = (
|
||||
True # Need to sample if you want best of for hf inference endpoints
|
||||
optional_params = litellm.SagemakerConfig().map_openai_params(
|
||||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
model=model,
|
||||
drop_params=(
|
||||
drop_params
|
||||
if drop_params is not None and isinstance(drop_params, bool)
|
||||
else False
|
||||
),
|
||||
)
|
||||
if stream is not None:
|
||||
optional_params["stream"] = stream
|
||||
if stop is not None:
|
||||
optional_params["stop"] = stop
|
||||
if max_tokens is not None:
|
||||
# HF TGI raises the following exception when max_new_tokens==0
|
||||
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
|
||||
if max_tokens == 0:
|
||||
max_tokens = 1
|
||||
optional_params["max_new_tokens"] = max_tokens
|
||||
passed_params.pop("aws_sagemaker_allow_zero_temp", None)
|
||||
elif custom_llm_provider == "bedrock":
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
|
@ -6295,6 +6284,10 @@ class ProviderConfigManager:
|
|||
return litellm.VertexAIAnthropicConfig()
|
||||
elif litellm.LlmProviders.CLOUDFLARE == provider:
|
||||
return litellm.CloudflareChatConfig()
|
||||
elif litellm.LlmProviders.SAGEMAKER_CHAT == provider:
|
||||
return litellm.SagemakerChatConfig()
|
||||
elif litellm.LlmProviders.SAGEMAKER == provider:
|
||||
return litellm.SagemakerConfig()
|
||||
elif litellm.LlmProviders.FIREWORKS_AI == provider:
|
||||
return litellm.FireworksAIConfig()
|
||||
elif litellm.LlmProviders.FRIENDLIAI == provider:
|
||||
|
|
|
@ -246,23 +246,6 @@ async def test_hf_completion_tgi():
|
|||
# test_get_cloudflare_response_streaming()
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="AWS Suspended Account")
|
||||
@pytest.mark.asyncio
|
||||
async def test_completion_sagemaker():
|
||||
# litellm.set_verbose=True
|
||||
try:
|
||||
response = await acompletion(
|
||||
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
|
||||
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
||||
)
|
||||
# Add any assertions here to check the response
|
||||
print(response)
|
||||
except litellm.Timeout as e:
|
||||
pass
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
|
||||
|
||||
def test_get_response_streaming():
|
||||
import asyncio
|
||||
|
||||
|
|
|
@ -129,7 +129,7 @@ async def test_completion_sagemaker_messages_api(sync_mode):
|
|||
"sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
||||
],
|
||||
)
|
||||
@pytest.mark.flaky(retries=3, delay=1)
|
||||
# @pytest.mark.flaky(retries=3, delay=1)
|
||||
async def test_completion_sagemaker_stream(sync_mode, model):
|
||||
try:
|
||||
litellm.set_verbose = False
|
||||
|
|
|
@ -1750,7 +1750,7 @@ def test_sagemaker_weird_response():
|
|||
try:
|
||||
import json
|
||||
|
||||
from litellm.llms.sagemaker.sagemaker import TokenIterator
|
||||
from litellm.llms.sagemaker.completion.handler import TokenIterator
|
||||
|
||||
chunk = """<s>[INST] Hey, how's it going? [/INST],
|
||||
I'm doing well, thanks for asking! How about you? Is there anything you'd like to chat about or ask? I'm here to help with any questions you might have."""
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue