refactor(sagemaker/): separate chat + completion routes + make them b… (#7151)

* refactor(sagemaker/): separate chat + completion routes + make them both use base llm config

Addresses https://github.com/andrewyng/aisuite/issues/113#issuecomment-2512369132

* fix(main.py): pass hf model name + custom prompt dict to litellm params
This commit is contained in:
Krish Dholakia 2024-12-10 19:40:05 -08:00 committed by GitHub
parent df12f87a64
commit 61afdab228
14 changed files with 799 additions and 534 deletions

View file

@ -1103,7 +1103,8 @@ from .llms.vertex_ai_and_google_ai_studio.vertex_ai_partner_models.ai21.transfor
VertexAIAi21Config,
)
from .llms.sagemaker.sagemaker import SagemakerConfig
from .llms.sagemaker.completion.transformation import SagemakerConfig
from .llms.sagemaker.chat.transformation import SagemakerChatConfig
from .llms.ollama import OllamaConfig
from .llms.ollama_chat import OllamaChatConfig
from .llms.maritalk import MaritTalkConfig

View file

@ -182,7 +182,7 @@ def get_supported_openai_params( # noqa: PLR0915
elif request_type == "embeddings":
return litellm.VertexAITextEmbeddingConfig().get_supported_openai_params()
elif custom_llm_provider == "sagemaker":
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
return litellm.SagemakerConfig().get_supported_openai_params(model=model)
elif custom_llm_provider == "aleph_alpha":
return [
"max_tokens",

View file

@ -182,7 +182,11 @@ class OpenAIGPTConfig(BaseConfig):
Returns:
dict: The transformed request. Sent as the body of the API call.
"""
raise NotImplementedError
return {
"model": model,
"messages": messages,
**optional_params,
}
def transform_response(
self,

View file

@ -34,7 +34,7 @@ class BaseLLMException(Exception):
self,
status_code: int,
message: str,
headers: Optional[Union[Dict, httpx.Headers]] = None,
headers: Optional[Union[httpx.Headers, Dict]] = None,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
):

View file

@ -0,0 +1,179 @@
import json
from copy import deepcopy
from typing import Any, Callable, Dict, Optional, Union
import httpx
from litellm.utils import ModelResponse, get_secret
from ...base_aws_llm import BaseAWSLLM
from ...prompt_templates.factory import custom_prompt, prompt_factory
from ..common_utils import AWSEventStreamDecoder
from .transformation import SagemakerChatConfig
class SagemakerChatHandler(BaseAWSLLM):
def _load_credentials(
self,
optional_params: dict,
):
try:
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
## CREDENTIALS ##
# pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
aws_session_token = optional_params.pop("aws_session_token", None)
aws_region_name = optional_params.pop("aws_region_name", None)
aws_role_name = optional_params.pop("aws_role_name", None)
aws_session_name = optional_params.pop("aws_session_name", None)
aws_profile_name = optional_params.pop("aws_profile_name", None)
optional_params.pop(
"aws_bedrock_runtime_endpoint", None
) # https://bedrock-runtime.{region_name}.amazonaws.com
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
### SET REGION NAME ###
if aws_region_name is None:
# check env #
litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
if litellm_aws_region_name is not None and isinstance(
litellm_aws_region_name, str
):
aws_region_name = litellm_aws_region_name
standard_aws_region_name = get_secret("AWS_REGION", None)
if standard_aws_region_name is not None and isinstance(
standard_aws_region_name, str
):
aws_region_name = standard_aws_region_name
if aws_region_name is None:
aws_region_name = "us-west-2"
credentials: Credentials = self.get_credentials(
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
aws_region_name=aws_region_name,
aws_session_name=aws_session_name,
aws_profile_name=aws_profile_name,
aws_role_name=aws_role_name,
aws_web_identity_token=aws_web_identity_token,
aws_sts_endpoint=aws_sts_endpoint,
)
return credentials, aws_region_name
def _prepare_request(
self,
credentials,
model: str,
data: dict,
optional_params: dict,
aws_region_name: str,
extra_headers: Optional[dict] = None,
):
try:
import boto3
from botocore.auth import SigV4Auth
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
except ImportError:
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
if optional_params.get("stream") is True:
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
else:
api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations"
sagemaker_base_url = optional_params.get("sagemaker_base_url", None)
if sagemaker_base_url is not None:
api_base = sagemaker_base_url
encoded_data = json.dumps(data).encode("utf-8")
headers = {"Content-Type": "application/json"}
if extra_headers is not None:
headers = {"Content-Type": "application/json", **extra_headers}
request = AWSRequest(
method="POST", url=api_base, data=encoded_data, headers=headers
)
sigv4.add_auth(request)
if (
extra_headers is not None and "Authorization" in extra_headers
): # prevent sigv4 from overwriting the auth header
request.headers["Authorization"] = extra_headers["Authorization"]
prepped_request = request.prepare()
return prepped_request
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
logging_obj,
optional_params: dict,
litellm_params: dict,
timeout: Optional[Union[float, httpx.Timeout]] = None,
custom_prompt_dict={},
logger_fn=None,
acompletion: bool = False,
headers: dict = {},
):
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
credentials, aws_region_name = self._load_credentials(optional_params)
inference_params = deepcopy(optional_params)
stream = inference_params.pop("stream", None)
from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler
openai_like_chat_completions = OpenAILikeChatHandler()
inference_params["stream"] = True if stream is True else False
_data = SagemakerChatConfig().transform_request(
model=model,
messages=messages,
optional_params=inference_params,
litellm_params=litellm_params,
headers=headers,
)
prepared_request = self._prepare_request(
model=model,
data=_data,
optional_params=optional_params,
credentials=credentials,
aws_region_name=aws_region_name,
)
custom_stream_decoder = AWSEventStreamDecoder(model="", is_messages_api=True)
return openai_like_chat_completions.completion(
model=model,
messages=messages,
api_base=prepared_request.url,
api_key=None,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
logging_obj=logging_obj,
optional_params=inference_params,
acompletion=acompletion,
litellm_params=litellm_params,
logger_fn=logger_fn,
timeout=timeout,
encoding=encoding,
headers=prepared_request.headers, # type: ignore
custom_endpoint=True,
custom_llm_provider="sagemaker_chat",
streaming_decoder=custom_stream_decoder, # type: ignore
)

View file

@ -0,0 +1,26 @@
"""
Translate from OpenAI's `/v1/chat/completions` to Sagemaker's `/invocations` API
Called if Sagemaker endpoint supports HF Messages API.
LiteLLM Docs: https://docs.litellm.ai/docs/providers/aws_sagemaker#sagemaker-messages-api
Huggingface Docs: https://huggingface.co/docs/text-generation-inference/en/messages_api
"""
from typing import Union
from httpx._models import Headers
from litellm.llms.base_llm.transformation import BaseLLMException
from ...OpenAI.chat.gpt_transformation import OpenAIGPTConfig
from ..common_utils import SagemakerError
class SagemakerChatConfig(OpenAIGPTConfig):
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return SagemakerError(
status_code=status_code, message=error_message, headers=headers
)

View file

@ -0,0 +1,198 @@
import json
from typing import AsyncIterator, Iterator, List, Optional, Union
import httpx
from litellm import verbose_logger
from litellm.llms.base_llm.transformation import BaseLLMException
from litellm.types.utils import GenericStreamingChunk as GChunk
from litellm.types.utils import StreamingChatCompletionChunk
_response_stream_shape_cache = None
class SagemakerError(BaseLLMException):
def __init__(
self,
status_code: int,
message: str,
headers: Optional[Union[dict, httpx.Headers]] = None,
):
super().__init__(status_code=status_code, message=message, headers=headers)
class AWSEventStreamDecoder:
def __init__(self, model: str, is_messages_api: Optional[bool] = None) -> None:
from botocore.parsers import EventStreamJSONParser
self.model = model
self.parser = EventStreamJSONParser()
self.content_blocks: List = []
self.is_messages_api = is_messages_api
def _chunk_parser_messages_api(
self, chunk_data: dict
) -> StreamingChatCompletionChunk:
openai_chunk = StreamingChatCompletionChunk(**chunk_data)
return openai_chunk
def _chunk_parser(self, chunk_data: dict) -> GChunk:
verbose_logger.debug("in sagemaker chunk parser, chunk_data %s", chunk_data)
_token = chunk_data.get("token", {}) or {}
_index = chunk_data.get("index", None) or 0
is_finished = False
finish_reason = ""
_text = _token.get("text", "")
if _text == "<|endoftext|>":
return GChunk(
text="",
index=_index,
is_finished=True,
finish_reason="stop",
usage=None,
)
return GChunk(
text=_text,
index=_index,
is_finished=is_finished,
finish_reason=finish_reason,
usage=None,
)
def iter_bytes(
self, iterator: Iterator[bytes]
) -> Iterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
"""Given an iterator that yields lines, iterate over it & yield every event encountered"""
from botocore.eventstream import EventStreamBuffer
event_stream_buffer = EventStreamBuffer()
accumulated_json = ""
for chunk in iterator:
event_stream_buffer.add_data(chunk)
for event in event_stream_buffer:
message = self._parse_message_from_event(event)
if message:
# remove data: prefix and "\n\n" at the end
message = message.replace("data:", "").replace("\n\n", "")
# Accumulate JSON data
accumulated_json += message
# Try to parse the accumulated JSON
try:
_data = json.loads(accumulated_json)
if self.is_messages_api:
yield self._chunk_parser_messages_api(chunk_data=_data)
else:
yield self._chunk_parser(chunk_data=_data)
# Reset accumulated_json after successful parsing
accumulated_json = ""
except json.JSONDecodeError:
# If it's not valid JSON yet, continue to the next event
continue
# Handle any remaining data after the iterator is exhausted
if accumulated_json:
try:
_data = json.loads(accumulated_json)
if self.is_messages_api:
yield self._chunk_parser_messages_api(chunk_data=_data)
else:
yield self._chunk_parser(chunk_data=_data)
except json.JSONDecodeError:
# Handle or log any unparseable data at the end
verbose_logger.error(
f"Warning: Unparseable JSON data remained: {accumulated_json}"
)
yield None
async def aiter_bytes(
self, iterator: AsyncIterator[bytes]
) -> AsyncIterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
"""Given an async iterator that yields lines, iterate over it & yield every event encountered"""
from botocore.eventstream import EventStreamBuffer
event_stream_buffer = EventStreamBuffer()
accumulated_json = ""
async for chunk in iterator:
event_stream_buffer.add_data(chunk)
for event in event_stream_buffer:
message = self._parse_message_from_event(event)
if message:
verbose_logger.debug("sagemaker parsed chunk bytes %s", message)
# remove data: prefix and "\n\n" at the end
message = message.replace("data:", "").replace("\n\n", "")
# Accumulate JSON data
accumulated_json += message
# Try to parse the accumulated JSON
try:
_data = json.loads(accumulated_json)
if self.is_messages_api:
yield self._chunk_parser_messages_api(chunk_data=_data)
else:
yield self._chunk_parser(chunk_data=_data)
# Reset accumulated_json after successful parsing
accumulated_json = ""
except json.JSONDecodeError:
# If it's not valid JSON yet, continue to the next event
continue
# Handle any remaining data after the iterator is exhausted
if accumulated_json:
try:
_data = json.loads(accumulated_json)
if self.is_messages_api:
yield self._chunk_parser_messages_api(chunk_data=_data)
else:
yield self._chunk_parser(chunk_data=_data)
except json.JSONDecodeError:
# Handle or log any unparseable data at the end
verbose_logger.error(
f"Warning: Unparseable JSON data remained: {accumulated_json}"
)
yield None
def _parse_message_from_event(self, event) -> Optional[str]:
response_dict = event.to_response_dict()
parsed_response = self.parser.parse(response_dict, get_response_stream_shape())
if response_dict["status_code"] != 200:
raise ValueError(f"Bad response code, expected 200: {response_dict}")
if "chunk" in parsed_response:
chunk = parsed_response.get("chunk")
if not chunk:
return None
return chunk.get("bytes").decode() # type: ignore[no-any-return]
else:
chunk = response_dict.get("body")
if not chunk:
return None
return chunk.decode() # type: ignore[no-any-return]
def get_response_stream_shape():
global _response_stream_shape_cache
if _response_stream_shape_cache is None:
from botocore.loaders import Loader
from botocore.model import ServiceModel
loader = Loader()
sagemaker_service_dict = loader.load_service_model(
"sagemaker-runtime", "service-2"
)
sagemaker_service_model = ServiceModel(sagemaker_service_dict)
_response_stream_shape_cache = sagemaker_service_model.shape_for(
"InvokeEndpointWithResponseStreamOutput"
)
return _response_stream_shape_cache

View file

@ -22,12 +22,7 @@ from litellm.llms.custom_httpx.http_handler import (
_get_httpx_client,
get_async_httpx_client,
)
from litellm.types.llms.openai import (
ChatCompletionToolCallChunk,
ChatCompletionUsageBlock,
)
from litellm.types.utils import GenericStreamingChunk as GChunk
from litellm.types.utils import StreamingChatCompletionChunk
from litellm.types.llms.openai import AllMessageValues
from litellm.utils import (
CustomStreamWrapper,
EmbeddingResponse,
@ -36,65 +31,12 @@ from litellm.utils import (
get_secret,
)
from ..base_aws_llm import BaseAWSLLM
from ..prompt_templates.factory import custom_prompt, prompt_factory
_response_stream_shape_cache = None
class SagemakerError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class SagemakerConfig:
"""
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
"""
max_new_tokens: Optional[int] = None
top_p: Optional[float] = None
temperature: Optional[float] = None
return_full_text: Optional[bool] = None
def __init__(
self,
max_new_tokens: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
return_full_text: Optional[bool] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
from ...base_aws_llm import BaseAWSLLM
from ...prompt_templates.factory import custom_prompt, prompt_factory
from ..common_utils import AWSEventStreamDecoder, SagemakerError
from .transformation import SagemakerConfig
sagemaker_config = SagemakerConfig()
"""
SAGEMAKER AUTH Keys/Vars
@ -166,6 +108,7 @@ class SagemakerLLM(BaseAWSLLM):
credentials,
model: str,
data: dict,
messages: List[AllMessageValues],
optional_params: dict,
aws_region_name: str,
extra_headers: Optional[dict] = None,
@ -189,9 +132,12 @@ class SagemakerLLM(BaseAWSLLM):
api_base = sagemaker_base_url
encoded_data = json.dumps(data).encode("utf-8")
headers = {"Content-Type": "application/json"}
if extra_headers is not None:
headers = {"Content-Type": "application/json", **extra_headers}
headers = sagemaker_config.validate_environment(
headers=extra_headers,
model=model,
messages=messages,
optional_params=optional_params,
)
request = AWSRequest(
method="POST", url=api_base, data=encoded_data, headers=headers
)
@ -205,49 +151,6 @@ class SagemakerLLM(BaseAWSLLM):
return prepped_request
def _transform_prompt(
self,
model: str,
messages: List,
custom_prompt_dict: dict,
hf_model_name: Optional[str],
) -> str:
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get(
"initial_prompt_value", ""
),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages,
)
elif hf_model_name in custom_prompt_dict:
# check if the base huggingface model has a registered custom prompt
model_prompt_details = custom_prompt_dict[hf_model_name]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get(
"initial_prompt_value", ""
),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages,
)
else:
if hf_model_name is None:
if "llama-2" in model.lower(): # llama-2 model
if "chat" in model.lower(): # apply llama2 chat template
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
else: # apply regular llama2 template
hf_model_name = "meta-llama/Llama-2-7b"
hf_model_name = (
hf_model_name or model
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
prompt: str = prompt_factory(model=hf_model_name, messages=messages) # type: ignore
return prompt
def completion( # noqa: PLR0915
self,
model: str,
@ -257,13 +160,13 @@ class SagemakerLLM(BaseAWSLLM):
encoding,
logging_obj,
optional_params: dict,
litellm_params: dict,
timeout: Optional[Union[float, httpx.Timeout]] = None,
custom_prompt_dict={},
hf_model_name=None,
litellm_params=None,
logger_fn=None,
acompletion: bool = False,
use_messages_api: Optional[bool] = None,
headers: dict = {},
):
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
@ -272,50 +175,6 @@ class SagemakerLLM(BaseAWSLLM):
stream = inference_params.pop("stream", None)
model_id = optional_params.get("model_id", None)
if use_messages_api is True:
from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler
openai_like_chat_completions = OpenAILikeChatHandler()
inference_params["stream"] = True if stream is True else False
_data: Dict[str, Any] = {
"model": model,
"messages": messages,
**inference_params,
}
prepared_request = self._prepare_request(
model=model,
data=_data,
optional_params=optional_params,
credentials=credentials,
aws_region_name=aws_region_name,
)
custom_stream_decoder = AWSEventStreamDecoder(
model="", is_messages_api=True
)
return openai_like_chat_completions.completion(
model=model,
messages=messages,
api_base=prepared_request.url,
api_key=None,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
logging_obj=logging_obj,
optional_params=inference_params,
acompletion=acompletion,
litellm_params=litellm_params,
logger_fn=logger_fn,
timeout=timeout,
encoding=encoding,
headers=prepared_request.headers, # type: ignore
custom_endpoint=True,
custom_llm_provider="sagemaker_chat",
streaming_decoder=custom_stream_decoder, # type: ignore
)
## Load Config
config = litellm.SagemakerConfig.get_config()
for k, v in config.items():
@ -325,21 +184,6 @@ class SagemakerLLM(BaseAWSLLM):
inference_params[k] = v
if stream is True:
data = {"parameters": inference_params, "stream": True}
prepared_request = self._prepare_request(
model=model,
data=data,
optional_params=optional_params,
credentials=credentials,
aws_region_name=aws_region_name,
)
if model_id is not None:
# Add model_id as InferenceComponentName header
# boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
prepared_request.headers.update(
{"X-Amzn-SageMaker-Inference-Component": model_id}
)
if acompletion is True:
response = self.async_streaming(
messages=messages,
@ -350,23 +194,25 @@ class SagemakerLLM(BaseAWSLLM):
encoding=encoding,
model_response=model_response,
logging_obj=logging_obj,
data=data,
model_id=model_id,
aws_region_name=aws_region_name,
credentials=credentials,
headers=headers,
litellm_params=litellm_params,
)
return response
else:
prompt = self._transform_prompt(
data = sagemaker_config.transform_request(
model=model,
messages=messages,
custom_prompt_dict=custom_prompt_dict,
hf_model_name=hf_model_name,
optional_params=optional_params,
litellm_params=litellm_params,
headers=headers,
)
data["inputs"] = prompt
prepared_request = self._prepare_request(
model=model,
data=data,
messages=messages,
optional_params=optional_params,
credentials=credentials,
aws_region_name=aws_region_name,
@ -388,7 +234,7 @@ class SagemakerLLM(BaseAWSLLM):
if sync_response.status_code != 200:
raise SagemakerError(
status_code=sync_response.status_code,
message=sync_response.read(),
message=str(sync_response.read()),
)
decoder = AWSEventStreamDecoder(model="")
@ -413,14 +259,6 @@ class SagemakerLLM(BaseAWSLLM):
return streaming_response
# Non-Streaming Requests
_data = {"parameters": inference_params}
prepared_request_args = {
"model": model,
"data": _data,
"optional_params": optional_params,
"credentials": credentials,
"aws_region_name": aws_region_name,
}
# Async completion
if acompletion is True:
@ -432,21 +270,30 @@ class SagemakerLLM(BaseAWSLLM):
model_response=model_response,
encoding=encoding,
logging_obj=logging_obj,
data=_data,
model_id=model_id,
optional_params=optional_params,
credentials=credentials,
aws_region_name=aws_region_name,
headers=headers,
litellm_params=litellm_params,
)
prompt = self._transform_prompt(
## Non-Streaming completion CALL
_data = sagemaker_config.transform_request(
model=model,
messages=messages,
custom_prompt_dict=custom_prompt_dict,
hf_model_name=hf_model_name,
optional_params=optional_params,
litellm_params=litellm_params,
headers=headers,
)
_data["inputs"] = prompt
## Non-Streaming completion CALL
prepared_request_args = {
"model": model,
"data": _data,
"optional_params": optional_params,
"credentials": credentials,
"aws_region_name": aws_region_name,
"messages": messages,
}
prepared_request = self._prepare_request(**prepared_request_args)
try:
if model_id is not None:
@ -507,53 +354,16 @@ class SagemakerLLM(BaseAWSLLM):
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
raise SagemakerError(status_code=status_code, message=error_message)
completion_response = sync_response.json()
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=completion_response,
additional_args={"complete_input_dict": _data},
return sagemaker_config.transform_response(
model=model,
raw_response=sync_response,
model_response=model_response,
logging_obj=logging_obj,
request_data=_data,
messages=messages,
optional_params=optional_params,
encoding=encoding,
)
print_verbose(f"raw model_response: {completion_response}")
## RESPONSE OBJECT
try:
if isinstance(completion_response, list):
completion_response_choices = completion_response[0]
else:
completion_response_choices = completion_response
completion_output = ""
if "generation" in completion_response_choices:
completion_output += completion_response_choices["generation"]
elif "generated_text" in completion_response_choices:
completion_output += completion_response_choices["generated_text"]
# check if the prompt template is part of output, if so - filter it out
if completion_output.startswith(prompt) and "<s>" in prompt:
completion_output = completion_output.replace(prompt, "", 1)
model_response.choices[0].message.content = completion_output # type: ignore
except Exception:
raise SagemakerError(
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
status_code=500,
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
async def make_async_call(
self,
@ -605,7 +415,7 @@ class SagemakerLLM(BaseAWSLLM):
async def async_streaming(
self,
messages: list,
messages: List[AllMessageValues],
model: str,
custom_prompt_dict: dict,
hf_model_name: Optional[str],
@ -616,13 +426,15 @@ class SagemakerLLM(BaseAWSLLM):
model_response: ModelResponse,
model_id: Optional[str],
logging_obj: Any,
data,
litellm_params: dict,
headers: dict,
):
data["inputs"] = self._transform_prompt(
data = await sagemaker_config.async_transform_request(
model=model,
messages=messages,
custom_prompt_dict=custom_prompt_dict,
hf_model_name=hf_model_name,
optional_params={**optional_params, "stream": True},
litellm_params=litellm_params,
headers=headers,
)
asyncified_prepare_request = asyncify(self._prepare_request)
prepared_request_args = {
@ -631,6 +443,7 @@ class SagemakerLLM(BaseAWSLLM):
"optional_params": optional_params,
"credentials": credentials,
"aws_region_name": aws_region_name,
"messages": messages,
}
prepared_request = await asyncified_prepare_request(**prepared_request_args)
completion_stream = await self.make_async_call(
@ -658,7 +471,7 @@ class SagemakerLLM(BaseAWSLLM):
async def async_completion(
self,
messages: list,
messages: List[AllMessageValues],
model: str,
custom_prompt_dict: dict,
hf_model_name: Optional[str],
@ -668,22 +481,23 @@ class SagemakerLLM(BaseAWSLLM):
model_response: ModelResponse,
optional_params: dict,
logging_obj: Any,
data: dict,
model_id: Optional[str],
headers: dict,
litellm_params: dict,
):
timeout = 300.0
async_handler = get_async_httpx_client(
llm_provider=litellm.LlmProviders.SAGEMAKER
)
async_transform_prompt = asyncify(self._transform_prompt)
data["inputs"] = await async_transform_prompt(
data = await sagemaker_config.async_transform_request(
model=model,
messages=messages,
custom_prompt_dict=custom_prompt_dict,
hf_model_name=hf_model_name,
optional_params=optional_params,
litellm_params=litellm_params,
headers=headers,
)
asyncified_prepare_request = asyncify(self._prepare_request)
prepared_request_args = {
"model": model,
@ -691,6 +505,7 @@ class SagemakerLLM(BaseAWSLLM):
"optional_params": optional_params,
"credentials": credentials,
"aws_region_name": aws_region_name,
"messages": messages,
}
prepared_request = await asyncified_prepare_request(**prepared_request_args)
@ -738,52 +553,16 @@ class SagemakerLLM(BaseAWSLLM):
if "Inference Component Name header is required" in error_message:
error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
raise SagemakerError(status_code=500, message=error_message)
completion_response = response.json()
## LOGGING
logging_obj.post_call(
input=data["inputs"],
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
return sagemaker_config.transform_response(
model=model,
raw_response=response,
model_response=model_response,
logging_obj=logging_obj,
request_data=data,
messages=messages,
optional_params=optional_params,
encoding=encoding,
)
## RESPONSE OBJECT
try:
if isinstance(completion_response, list):
completion_response_choices = completion_response[0]
else:
completion_response_choices = completion_response
completion_output = ""
if "generation" in completion_response_choices:
completion_output += completion_response_choices["generation"]
elif "generated_text" in completion_response_choices:
completion_output += completion_response_choices["generated_text"]
# check if the prompt template is part of output, if so - filter it out
if completion_output.startswith(data["inputs"]) and "<s>" in data["inputs"]:
completion_output = completion_output.replace(data["inputs"], "", 1)
model_response.choices[0].message.content = completion_output # type: ignore
except Exception:
raise SagemakerError(
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
status_code=500,
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(encoding.encode(data["inputs"]))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def embedding(
self,
@ -928,180 +707,3 @@ class SagemakerLLM(BaseAWSLLM):
)
return model_response
def get_response_stream_shape():
global _response_stream_shape_cache
if _response_stream_shape_cache is None:
from botocore.loaders import Loader
from botocore.model import ServiceModel
loader = Loader()
sagemaker_service_dict = loader.load_service_model(
"sagemaker-runtime", "service-2"
)
sagemaker_service_model = ServiceModel(sagemaker_service_dict)
_response_stream_shape_cache = sagemaker_service_model.shape_for(
"InvokeEndpointWithResponseStreamOutput"
)
return _response_stream_shape_cache
class AWSEventStreamDecoder:
def __init__(self, model: str, is_messages_api: Optional[bool] = None) -> None:
from botocore.parsers import EventStreamJSONParser
self.model = model
self.parser = EventStreamJSONParser()
self.content_blocks: List = []
self.is_messages_api = is_messages_api
def _chunk_parser_messages_api(
self, chunk_data: dict
) -> StreamingChatCompletionChunk:
openai_chunk = StreamingChatCompletionChunk(**chunk_data)
return openai_chunk
def _chunk_parser(self, chunk_data: dict) -> GChunk:
verbose_logger.debug("in sagemaker chunk parser, chunk_data %s", chunk_data)
_token = chunk_data.get("token", {}) or {}
_index = chunk_data.get("index", None) or 0
is_finished = False
finish_reason = ""
_text = _token.get("text", "")
if _text == "<|endoftext|>":
return GChunk(
text="",
index=_index,
is_finished=True,
finish_reason="stop",
usage=None,
)
return GChunk(
text=_text,
index=_index,
is_finished=is_finished,
finish_reason=finish_reason,
usage=None,
)
def iter_bytes(
self, iterator: Iterator[bytes]
) -> Iterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
"""Given an iterator that yields lines, iterate over it & yield every event encountered"""
from botocore.eventstream import EventStreamBuffer
event_stream_buffer = EventStreamBuffer()
accumulated_json = ""
for chunk in iterator:
event_stream_buffer.add_data(chunk)
for event in event_stream_buffer:
message = self._parse_message_from_event(event)
if message:
# remove data: prefix and "\n\n" at the end
message = message.replace("data:", "").replace("\n\n", "")
# Accumulate JSON data
accumulated_json += message
# Try to parse the accumulated JSON
try:
_data = json.loads(accumulated_json)
if self.is_messages_api:
yield self._chunk_parser_messages_api(chunk_data=_data)
else:
yield self._chunk_parser(chunk_data=_data)
# Reset accumulated_json after successful parsing
accumulated_json = ""
except json.JSONDecodeError:
# If it's not valid JSON yet, continue to the next event
continue
# Handle any remaining data after the iterator is exhausted
if accumulated_json:
try:
_data = json.loads(accumulated_json)
if self.is_messages_api:
yield self._chunk_parser_messages_api(chunk_data=_data)
else:
yield self._chunk_parser(chunk_data=_data)
except json.JSONDecodeError:
# Handle or log any unparseable data at the end
verbose_logger.error(
f"Warning: Unparseable JSON data remained: {accumulated_json}"
)
yield None
async def aiter_bytes(
self, iterator: AsyncIterator[bytes]
) -> AsyncIterator[Optional[Union[GChunk, StreamingChatCompletionChunk]]]:
"""Given an async iterator that yields lines, iterate over it & yield every event encountered"""
from botocore.eventstream import EventStreamBuffer
event_stream_buffer = EventStreamBuffer()
accumulated_json = ""
async for chunk in iterator:
event_stream_buffer.add_data(chunk)
for event in event_stream_buffer:
message = self._parse_message_from_event(event)
if message:
verbose_logger.debug("sagemaker parsed chunk bytes %s", message)
# remove data: prefix and "\n\n" at the end
message = message.replace("data:", "").replace("\n\n", "")
# Accumulate JSON data
accumulated_json += message
# Try to parse the accumulated JSON
try:
_data = json.loads(accumulated_json)
if self.is_messages_api:
yield self._chunk_parser_messages_api(chunk_data=_data)
else:
yield self._chunk_parser(chunk_data=_data)
# Reset accumulated_json after successful parsing
accumulated_json = ""
except json.JSONDecodeError:
# If it's not valid JSON yet, continue to the next event
continue
# Handle any remaining data after the iterator is exhausted
if accumulated_json:
try:
_data = json.loads(accumulated_json)
if self.is_messages_api:
yield self._chunk_parser_messages_api(chunk_data=_data)
else:
yield self._chunk_parser(chunk_data=_data)
except json.JSONDecodeError:
# Handle or log any unparseable data at the end
verbose_logger.error(
f"Warning: Unparseable JSON data remained: {accumulated_json}"
)
yield None
def _parse_message_from_event(self, event) -> Optional[str]:
response_dict = event.to_response_dict()
parsed_response = self.parser.parse(response_dict, get_response_stream_shape())
if response_dict["status_code"] != 200:
raise ValueError(f"Bad response code, expected 200: {response_dict}")
if "chunk" in parsed_response:
chunk = parsed_response.get("chunk")
if not chunk:
return None
return chunk.get("bytes").decode() # type: ignore[no-any-return]
else:
chunk = response_dict.get("body")
if not chunk:
return None
return chunk.decode() # type: ignore[no-any-return]

View file

@ -0,0 +1,272 @@
"""
Translate from OpenAI's `/v1/chat/completions` to Sagemaker's `/invoke`
In the Huggingface TGI format.
"""
import json
import time
import types
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from httpx._models import Headers, Response
import litellm
from litellm.litellm_core_utils.asyncify import asyncify
from litellm.llms.base_llm.transformation import BaseConfig, BaseLLMException
from litellm.llms.prompt_templates.factory import custom_prompt, prompt_factory
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import Usage
from ..common_utils import SagemakerError
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class SagemakerConfig(BaseConfig):
"""
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
"""
max_new_tokens: Optional[int] = None
top_p: Optional[float] = None
temperature: Optional[float] = None
return_full_text: Optional[bool] = None
def __init__(
self,
max_new_tokens: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
return_full_text: Optional[bool] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return super().get_config()
def _transform_messages(
self,
messages: List[AllMessageValues],
) -> List[AllMessageValues]:
return messages
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, Headers]
) -> BaseLLMException:
return SagemakerError(
message=error_message, status_code=status_code, headers=headers
)
def get_supported_openai_params(self, model: str) -> List:
return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
for param, value in non_default_params.items():
if param == "temperature":
if value == 0.0 or value == 0:
# hugging face exception raised when temp==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
if not non_default_params.get(
"aws_sagemaker_allow_zero_temp", False
):
value = 0.01
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "n":
optional_params["best_of"] = value
optional_params["do_sample"] = (
True # Need to sample if you want best of for hf inference endpoints
)
if param == "stream":
optional_params["stream"] = value
if param == "stop":
optional_params["stop"] = value
if param == "max_tokens":
# HF TGI raises the following exception when max_new_tokens==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
if value == 0:
value = 1
optional_params["max_new_tokens"] = value
non_default_params.pop("aws_sagemaker_allow_zero_temp", None)
return optional_params
def _transform_prompt(
self,
model: str,
messages: List,
custom_prompt_dict: dict,
hf_model_name: Optional[str],
) -> str:
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get(
"initial_prompt_value", ""
),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages,
)
elif hf_model_name in custom_prompt_dict:
# check if the base huggingface model has a registered custom prompt
model_prompt_details = custom_prompt_dict[hf_model_name]
prompt = custom_prompt(
role_dict=model_prompt_details.get("roles", None),
initial_prompt_value=model_prompt_details.get(
"initial_prompt_value", ""
),
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
messages=messages,
)
else:
if hf_model_name is None:
if "llama-2" in model.lower(): # llama-2 model
if "chat" in model.lower(): # apply llama2 chat template
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
else: # apply regular llama2 template
hf_model_name = "meta-llama/Llama-2-7b"
hf_model_name = (
hf_model_name or model
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
prompt: str = prompt_factory(model=hf_model_name, messages=messages) # type: ignore
return prompt
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
inference_params = optional_params.copy()
stream = inference_params.pop("stream", False)
data: Dict = {"parameters": inference_params}
if stream is True:
data["stream"] = True
custom_prompt_dict = (
litellm_params.get("custom_prompt_dict", None) or litellm.custom_prompt_dict
)
hf_model_name = litellm_params.get("hf_model_name", None)
prompt = self._transform_prompt(
model=model,
messages=messages,
custom_prompt_dict=custom_prompt_dict,
hf_model_name=hf_model_name,
)
data["inputs"] = prompt
return data
async def async_transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
return await asyncify(self.transform_request)(
model, messages, optional_params, litellm_params, headers
)
def transform_response(
self,
model: str,
raw_response: Response,
model_response: litellm.ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
encoding: str,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> litellm.ModelResponse:
completion_response = raw_response.json()
## LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=completion_response,
additional_args={"complete_input_dict": request_data},
)
prompt = request_data["inputs"]
## RESPONSE OBJECT
try:
if isinstance(completion_response, list):
completion_response_choices = completion_response[0]
else:
completion_response_choices = completion_response
completion_output = ""
if "generation" in completion_response_choices:
completion_output += completion_response_choices["generation"]
elif "generated_text" in completion_response_choices:
completion_output += completion_response_choices["generated_text"]
# check if the prompt template is part of output, if so - filter it out
if completion_output.startswith(prompt) and "<s>" in prompt:
completion_output = completion_output.replace(prompt, "", 1)
model_response.choices[0].message.content = completion_output # type: ignore
except Exception:
raise SagemakerError(
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
status_code=500,
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
)
model_response.created = int(time.time())
model_response.model = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)
return model_response
def validate_environment(
self,
headers: Optional[dict],
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
) -> dict:
headers = {"Content-Type": "application/json"}
if headers is not None:
headers = {"Content-Type": "application/json", **headers}
return headers

View file

@ -130,7 +130,8 @@ from .llms.prompt_templates.factory import (
prompt_factory,
stringify_json_tool_call_content,
)
from .llms.sagemaker.sagemaker import SagemakerLLM
from .llms.sagemaker.chat.handler import SagemakerChatHandler
from .llms.sagemaker.completion.handler import SagemakerLLM
from .llms.text_completion_codestral import CodestralTextCompletion
from .llms.together_ai.completion.handler import TogetherAITextCompletion
from .llms.triton import TritonChatCompletion
@ -229,6 +230,7 @@ watsonx_chat_completion = WatsonXChatHandler()
openai_like_embedding = OpenAILikeEmbeddingHandler()
databricks_embedding = DatabricksEmbeddingHandler()
base_llm_http_handler = BaseLLMHTTPHandler()
sagemaker_chat_completion = SagemakerChatHandler()
####### COMPLETION ENDPOINTS ################
@ -1073,6 +1075,8 @@ def completion( # type: ignore # noqa: PLR0915
user_continue_message=kwargs.get("user_continue_message"),
base_model=base_model,
litellm_trace_id=kwargs.get("litellm_trace_id"),
hf_model_name=hf_model_name,
custom_prompt_dict=custom_prompt_dict,
)
logging.update_environment_variables(
model=model,
@ -2513,10 +2517,23 @@ def completion( # type: ignore # noqa: PLR0915
## RESPONSE OBJECT
response = model_response
elif (
custom_llm_provider == "sagemaker"
or custom_llm_provider == "sagemaker_chat"
):
elif custom_llm_provider == "sagemaker_chat":
# boto3 reads keys from .env
response = sagemaker_chat_completion.completion(
model=model,
messages=messages,
model_response=model_response,
print_verbose=print_verbose,
optional_params=optional_params,
litellm_params=litellm_params,
custom_prompt_dict=custom_prompt_dict,
logger_fn=logger_fn,
encoding=encoding,
logging_obj=logging,
acompletion=acompletion,
headers=headers or {},
)
elif custom_llm_provider == "sagemaker":
# boto3 reads keys from .env
model_response = sagemaker_llm.completion(
model=model,
@ -2531,16 +2548,6 @@ def completion( # type: ignore # noqa: PLR0915
encoding=encoding,
logging_obj=logging,
acompletion=acompletion,
use_messages_api=(
True if custom_llm_provider == "sagemaker_chat" else False
),
)
if optional_params.get("stream", False):
## LOGGING
logging.post_call(
input=messages,
api_key=None,
original_response=model_response,
)
## RESPONSE OBJECT

View file

@ -2076,6 +2076,8 @@ def get_litellm_params(
user_continue_message=None,
base_model=None,
litellm_trace_id=None,
hf_model_name: Optional[str] = None,
custom_prompt_dict: Optional[dict] = None,
):
litellm_params = {
"acompletion": acompletion,
@ -2105,6 +2107,8 @@ def get_litellm_params(
"base_model": base_model
or _get_base_model_from_litellm_call_metadata(metadata=metadata),
"litellm_trace_id": litellm_trace_id,
"hf_model_name": hf_model_name,
"custom_prompt_dict": custom_prompt_dict,
}
return litellm_params
@ -3145,31 +3149,16 @@ def get_optional_params( # noqa: PLR0915
)
_check_valid_arg(supported_params=supported_params)
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
if temperature is not None:
if temperature == 0.0 or temperature == 0:
# hugging face exception raised when temp==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
if not passed_params.get("aws_sagemaker_allow_zero_temp", False):
temperature = 0.01
optional_params["temperature"] = temperature
if top_p is not None:
optional_params["top_p"] = top_p
if n is not None:
optional_params["best_of"] = n
optional_params["do_sample"] = (
True # Need to sample if you want best of for hf inference endpoints
optional_params = litellm.SagemakerConfig().map_openai_params(
non_default_params=non_default_params,
optional_params=optional_params,
model=model,
drop_params=(
drop_params
if drop_params is not None and isinstance(drop_params, bool)
else False
),
)
if stream is not None:
optional_params["stream"] = stream
if stop is not None:
optional_params["stop"] = stop
if max_tokens is not None:
# HF TGI raises the following exception when max_new_tokens==0
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
if max_tokens == 0:
max_tokens = 1
optional_params["max_new_tokens"] = max_tokens
passed_params.pop("aws_sagemaker_allow_zero_temp", None)
elif custom_llm_provider == "bedrock":
supported_params = get_supported_openai_params(
model=model, custom_llm_provider=custom_llm_provider
@ -6295,6 +6284,10 @@ class ProviderConfigManager:
return litellm.VertexAIAnthropicConfig()
elif litellm.LlmProviders.CLOUDFLARE == provider:
return litellm.CloudflareChatConfig()
elif litellm.LlmProviders.SAGEMAKER_CHAT == provider:
return litellm.SagemakerChatConfig()
elif litellm.LlmProviders.SAGEMAKER == provider:
return litellm.SagemakerConfig()
elif litellm.LlmProviders.FIREWORKS_AI == provider:
return litellm.FireworksAIConfig()
elif litellm.LlmProviders.FRIENDLIAI == provider:

View file

@ -246,23 +246,6 @@ async def test_hf_completion_tgi():
# test_get_cloudflare_response_streaming()
@pytest.mark.skip(reason="AWS Suspended Account")
@pytest.mark.asyncio
async def test_completion_sagemaker():
# litellm.set_verbose=True
try:
response = await acompletion(
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
messages=[{"content": "Hello, how are you?", "role": "user"}],
)
# Add any assertions here to check the response
print(response)
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_get_response_streaming():
import asyncio

View file

@ -129,7 +129,7 @@ async def test_completion_sagemaker_messages_api(sync_mode):
"sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
],
)
@pytest.mark.flaky(retries=3, delay=1)
# @pytest.mark.flaky(retries=3, delay=1)
async def test_completion_sagemaker_stream(sync_mode, model):
try:
litellm.set_verbose = False

View file

@ -1750,7 +1750,7 @@ def test_sagemaker_weird_response():
try:
import json
from litellm.llms.sagemaker.sagemaker import TokenIterator
from litellm.llms.sagemaker.completion.handler import TokenIterator
chunk = """<s>[INST] Hey, how's it going? [/INST],
I'm doing well, thanks for asking! How about you? Is there anything you'd like to chat about or ask? I'm here to help with any questions you might have."""