mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
[Bug Fix]: Errors in LiteLLM When Using Embeddings Model with Usage-Based Routing (#7390)
* use slp for usage based routing v2 * update error msg * fix usage based routing v2 * test_tpm_rpm_updated * fix unused imports * fix unused imports
This commit is contained in:
parent
48316520f4
commit
61b636c20d
3 changed files with 254 additions and 97 deletions
|
@ -1,10 +1,9 @@
|
|||
#### What this does ####
|
||||
# identifies lowest tpm deployment
|
||||
import random
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union, cast
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
from pydantic import BaseModel
|
||||
|
||||
import litellm
|
||||
from litellm import token_counter
|
||||
|
@ -13,7 +12,7 @@ from litellm.caching.caching import DualCache
|
|||
from litellm.integrations.custom_logger import CustomLogger
|
||||
from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs
|
||||
from litellm.types.router import RouterErrors
|
||||
from litellm.types.utils import LiteLLMPydanticObjectBase
|
||||
from litellm.types.utils import LiteLLMPydanticObjectBase, StandardLoggingPayload
|
||||
from litellm.utils import get_utc_datetime, print_verbose
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -223,20 +222,19 @@ class LowestTPMLoggingHandler_v2(CustomLogger):
|
|||
"""
|
||||
Update TPM/RPM usage on success
|
||||
"""
|
||||
if kwargs["litellm_params"].get("metadata") is None:
|
||||
pass
|
||||
else:
|
||||
model_group = kwargs["litellm_params"]["metadata"].get(
|
||||
"model_group", None
|
||||
standard_logging_object: Optional[StandardLoggingPayload] = kwargs.get(
|
||||
"standard_logging_object"
|
||||
)
|
||||
|
||||
id = kwargs["litellm_params"].get("model_info", {}).get("id", None)
|
||||
if standard_logging_object is None:
|
||||
raise ValueError("standard_logging_object not passed in.")
|
||||
model_group = standard_logging_object.get("model_group")
|
||||
id = standard_logging_object.get("model_id")
|
||||
if model_group is None or id is None:
|
||||
return
|
||||
elif isinstance(id, int):
|
||||
id = str(id)
|
||||
|
||||
total_tokens = response_obj["usage"]["total_tokens"]
|
||||
total_tokens = standard_logging_object.get("total_tokens")
|
||||
|
||||
# ------------
|
||||
# Setup values
|
||||
|
@ -261,7 +259,7 @@ class LowestTPMLoggingHandler_v2(CustomLogger):
|
|||
self.logged_success += 1
|
||||
except Exception as e:
|
||||
verbose_logger.exception(
|
||||
"litellm.proxy.hooks.prompt_injection_detection.py::async_pre_call_hook(): Exception occured - {}".format(
|
||||
"litellm.proxy.hooks.lowest_tpm_rpm_v2.py::log_success_event(): Exception occured - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
|
@ -272,26 +270,18 @@ class LowestTPMLoggingHandler_v2(CustomLogger):
|
|||
"""
|
||||
Update TPM usage on success
|
||||
"""
|
||||
if kwargs["litellm_params"].get("metadata") is None:
|
||||
pass
|
||||
else:
|
||||
model_group = kwargs["litellm_params"]["metadata"].get(
|
||||
"model_group", None
|
||||
standard_logging_object: Optional[StandardLoggingPayload] = kwargs.get(
|
||||
"standard_logging_object"
|
||||
)
|
||||
|
||||
if isinstance(response_obj, BaseModel) and not hasattr(
|
||||
response_obj, "usage"
|
||||
):
|
||||
return
|
||||
|
||||
id = kwargs["litellm_params"].get("model_info", {}).get("id", None)
|
||||
if standard_logging_object is None:
|
||||
raise ValueError("standard_logging_object not passed in.")
|
||||
model_group = standard_logging_object.get("model_group")
|
||||
id = standard_logging_object.get("model_id")
|
||||
if model_group is None or id is None:
|
||||
return
|
||||
elif isinstance(id, int):
|
||||
id = str(id)
|
||||
|
||||
total_tokens = cast(dict, response_obj)["usage"]["total_tokens"]
|
||||
|
||||
total_tokens = standard_logging_object.get("total_tokens")
|
||||
# ------------
|
||||
# Setup values
|
||||
# ------------
|
||||
|
@ -319,7 +309,7 @@ class LowestTPMLoggingHandler_v2(CustomLogger):
|
|||
self.logged_success += 1
|
||||
except Exception as e:
|
||||
verbose_logger.exception(
|
||||
"litellm.proxy.hooks.prompt_injection_detection.py::async_pre_call_hook(): Exception occured - {}".format(
|
||||
"litellm.proxy.hooks.lowest_tpm_rpm_v2.py::async_log_success_event(): Exception occured - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
|
|
131
tests/local_testing/create_mock_standard_logging_payload.py
Normal file
131
tests/local_testing/create_mock_standard_logging_payload.py
Normal file
|
@ -0,0 +1,131 @@
|
|||
import io
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
sys.path.insert(0, os.path.abspath("../.."))
|
||||
|
||||
import asyncio
|
||||
import gzip
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
import litellm
|
||||
from litellm import completion
|
||||
from litellm._logging import verbose_logger
|
||||
from litellm.integrations.datadog.datadog import *
|
||||
from datetime import datetime, timedelta
|
||||
from litellm.types.utils import (
|
||||
StandardLoggingPayload,
|
||||
StandardLoggingModelInformation,
|
||||
StandardLoggingMetadata,
|
||||
StandardLoggingHiddenParams,
|
||||
)
|
||||
|
||||
verbose_logger.setLevel(logging.DEBUG)
|
||||
|
||||
|
||||
def create_standard_logging_payload() -> StandardLoggingPayload:
|
||||
return StandardLoggingPayload(
|
||||
id="test_id",
|
||||
call_type="completion",
|
||||
response_cost=0.1,
|
||||
response_cost_failure_debug_info=None,
|
||||
status="success",
|
||||
total_tokens=30,
|
||||
prompt_tokens=20,
|
||||
completion_tokens=10,
|
||||
startTime=1234567890.0,
|
||||
endTime=1234567891.0,
|
||||
completionStartTime=1234567890.5,
|
||||
model_map_information=StandardLoggingModelInformation(
|
||||
model_map_key="gpt-3.5-turbo", model_map_value=None
|
||||
),
|
||||
model="gpt-3.5-turbo",
|
||||
model_id="model-123",
|
||||
model_group="openai-gpt",
|
||||
api_base="https://api.openai.com",
|
||||
metadata=StandardLoggingMetadata(
|
||||
user_api_key_hash="test_hash",
|
||||
user_api_key_org_id=None,
|
||||
user_api_key_alias="test_alias",
|
||||
user_api_key_team_id="test_team",
|
||||
user_api_key_user_id="test_user",
|
||||
user_api_key_team_alias="test_team_alias",
|
||||
spend_logs_metadata=None,
|
||||
requester_ip_address="127.0.0.1",
|
||||
requester_metadata=None,
|
||||
),
|
||||
cache_hit=False,
|
||||
cache_key=None,
|
||||
saved_cache_cost=0.0,
|
||||
request_tags=[],
|
||||
end_user=None,
|
||||
requester_ip_address="127.0.0.1",
|
||||
messages=[{"role": "user", "content": "Hello, world!"}],
|
||||
response={"choices": [{"message": {"content": "Hi there!"}}]},
|
||||
error_str=None,
|
||||
model_parameters={"stream": True},
|
||||
hidden_params=StandardLoggingHiddenParams(
|
||||
model_id="model-123",
|
||||
cache_key=None,
|
||||
api_base="https://api.openai.com",
|
||||
response_cost="0.1",
|
||||
additional_headers=None,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def create_standard_logging_payload_with_long_content() -> StandardLoggingPayload:
|
||||
return StandardLoggingPayload(
|
||||
id="test_id",
|
||||
call_type="completion",
|
||||
response_cost=0.1,
|
||||
response_cost_failure_debug_info=None,
|
||||
status="success",
|
||||
total_tokens=30,
|
||||
prompt_tokens=20,
|
||||
completion_tokens=10,
|
||||
startTime=1234567890.0,
|
||||
endTime=1234567891.0,
|
||||
completionStartTime=1234567890.5,
|
||||
model_map_information=StandardLoggingModelInformation(
|
||||
model_map_key="gpt-3.5-turbo", model_map_value=None
|
||||
),
|
||||
model="gpt-3.5-turbo",
|
||||
model_id="model-123",
|
||||
model_group="openai-gpt",
|
||||
api_base="https://api.openai.com",
|
||||
metadata=StandardLoggingMetadata(
|
||||
user_api_key_hash="test_hash",
|
||||
user_api_key_org_id=None,
|
||||
user_api_key_alias="test_alias",
|
||||
user_api_key_team_id="test_team",
|
||||
user_api_key_user_id="test_user",
|
||||
user_api_key_team_alias="test_team_alias",
|
||||
spend_logs_metadata=None,
|
||||
requester_ip_address="127.0.0.1",
|
||||
requester_metadata=None,
|
||||
),
|
||||
cache_hit=False,
|
||||
cache_key=None,
|
||||
saved_cache_cost=0.0,
|
||||
request_tags=[],
|
||||
end_user=None,
|
||||
requester_ip_address="127.0.0.1",
|
||||
messages=[{"role": "user", "content": "Hello, world!" * 80000}],
|
||||
response={"choices": [{"message": {"content": "Hi there!" * 80000}}]},
|
||||
error_str="error_str" * 80000,
|
||||
model_parameters={"stream": True},
|
||||
hidden_params=StandardLoggingHiddenParams(
|
||||
model_id="model-123",
|
||||
cache_key=None,
|
||||
api_base="https://api.openai.com",
|
||||
response_cost="0.1",
|
||||
additional_headers=None,
|
||||
),
|
||||
)
|
|
@ -18,7 +18,7 @@ sys.path.insert(
|
|||
0, os.path.abspath("../..")
|
||||
) # Adds the parent directory to the system path
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
from litellm.types.utils import StandardLoggingPayload
|
||||
import pytest
|
||||
|
||||
import litellm
|
||||
|
@ -28,6 +28,7 @@ from litellm.router_strategy.lowest_tpm_rpm_v2 import (
|
|||
LowestTPMLoggingHandler_v2 as LowestTPMLoggingHandler,
|
||||
)
|
||||
from litellm.utils import get_utc_datetime
|
||||
from create_mock_standard_logging_payload import create_standard_logging_payload
|
||||
|
||||
### UNIT TESTS FOR TPM/RPM ROUTING ###
|
||||
|
||||
|
@ -44,17 +45,25 @@ def test_tpm_rpm_updated():
|
|||
)
|
||||
model_group = "gpt-3.5-turbo"
|
||||
deployment_id = "1234"
|
||||
deployment = "azure/chatgpt-v-2"
|
||||
total_tokens = 50
|
||||
standard_logging_payload = create_standard_logging_payload()
|
||||
standard_logging_payload["model_group"] = model_group
|
||||
standard_logging_payload["model_id"] = deployment_id
|
||||
standard_logging_payload["total_tokens"] = total_tokens
|
||||
kwargs = {
|
||||
"litellm_params": {
|
||||
"metadata": {
|
||||
"model_group": "gpt-3.5-turbo",
|
||||
"deployment": "azure/chatgpt-v-2",
|
||||
"model_group": model_group,
|
||||
"deployment": deployment,
|
||||
},
|
||||
"model_info": {"id": deployment_id},
|
||||
},
|
||||
"standard_logging_object": standard_logging_payload,
|
||||
}
|
||||
}
|
||||
|
||||
start_time = time.time()
|
||||
response_obj = {"usage": {"total_tokens": 50}}
|
||||
response_obj = {"usage": {"total_tokens": total_tokens}}
|
||||
end_time = time.time()
|
||||
lowest_tpm_logger.pre_call_check(deployment=kwargs["litellm_params"])
|
||||
lowest_tpm_logger.log_success_event(
|
||||
|
@ -97,18 +106,25 @@ def test_get_available_deployments():
|
|||
)
|
||||
model_group = "gpt-3.5-turbo"
|
||||
## DEPLOYMENT 1 ##
|
||||
total_tokens = 50
|
||||
deployment_id = "1234"
|
||||
deployment = "azure/chatgpt-v-2"
|
||||
standard_logging_payload = create_standard_logging_payload()
|
||||
standard_logging_payload["model_group"] = model_group
|
||||
standard_logging_payload["model_id"] = deployment_id
|
||||
standard_logging_payload["total_tokens"] = total_tokens
|
||||
kwargs = {
|
||||
"litellm_params": {
|
||||
"metadata": {
|
||||
"model_group": "gpt-3.5-turbo",
|
||||
"deployment": "azure/chatgpt-v-2",
|
||||
"model_group": model_group,
|
||||
"deployment": deployment,
|
||||
},
|
||||
"model_info": {"id": deployment_id},
|
||||
}
|
||||
},
|
||||
"standard_logging_object": standard_logging_payload,
|
||||
}
|
||||
start_time = time.time()
|
||||
response_obj = {"usage": {"total_tokens": 50}}
|
||||
response_obj = {"usage": {"total_tokens": total_tokens}}
|
||||
end_time = time.time()
|
||||
lowest_tpm_logger.log_success_event(
|
||||
response_obj=response_obj,
|
||||
|
@ -117,18 +133,24 @@ def test_get_available_deployments():
|
|||
end_time=end_time,
|
||||
)
|
||||
## DEPLOYMENT 2 ##
|
||||
total_tokens = 20
|
||||
deployment_id = "5678"
|
||||
standard_logging_payload = create_standard_logging_payload()
|
||||
standard_logging_payload["model_group"] = model_group
|
||||
standard_logging_payload["model_id"] = deployment_id
|
||||
standard_logging_payload["total_tokens"] = total_tokens
|
||||
kwargs = {
|
||||
"litellm_params": {
|
||||
"metadata": {
|
||||
"model_group": "gpt-3.5-turbo",
|
||||
"deployment": "azure/chatgpt-v-2",
|
||||
"model_group": model_group,
|
||||
"deployment": deployment,
|
||||
},
|
||||
"model_info": {"id": deployment_id},
|
||||
}
|
||||
},
|
||||
"standard_logging_object": standard_logging_payload,
|
||||
}
|
||||
start_time = time.time()
|
||||
response_obj = {"usage": {"total_tokens": 20}}
|
||||
response_obj = {"usage": {"total_tokens": total_tokens}}
|
||||
end_time = time.time()
|
||||
lowest_tpm_logger.log_success_event(
|
||||
response_obj=response_obj,
|
||||
|
@ -187,13 +209,17 @@ def test_router_get_available_deployments():
|
|||
print(f"router id's: {router.get_model_ids()}")
|
||||
## DEPLOYMENT 1 ##
|
||||
deployment_id = 1
|
||||
standard_logging_payload = create_standard_logging_payload()
|
||||
standard_logging_payload["model_group"] = "azure-model"
|
||||
standard_logging_payload["model_id"] = str(deployment_id)
|
||||
kwargs = {
|
||||
"litellm_params": {
|
||||
"metadata": {
|
||||
"model_group": "azure-model",
|
||||
},
|
||||
"model_info": {"id": 1},
|
||||
}
|
||||
},
|
||||
"standard_logging_object": standard_logging_payload,
|
||||
}
|
||||
start_time = time.time()
|
||||
response_obj = {"usage": {"total_tokens": 50}}
|
||||
|
@ -206,13 +232,17 @@ def test_router_get_available_deployments():
|
|||
)
|
||||
## DEPLOYMENT 2 ##
|
||||
deployment_id = 2
|
||||
standard_logging_payload = create_standard_logging_payload()
|
||||
standard_logging_payload["model_group"] = "azure-model"
|
||||
standard_logging_payload["model_id"] = str(deployment_id)
|
||||
kwargs = {
|
||||
"litellm_params": {
|
||||
"metadata": {
|
||||
"model_group": "azure-model",
|
||||
},
|
||||
"model_info": {"id": 2},
|
||||
}
|
||||
},
|
||||
"standard_logging_object": standard_logging_payload,
|
||||
}
|
||||
start_time = time.time()
|
||||
response_obj = {"usage": {"total_tokens": 20}}
|
||||
|
@ -260,16 +290,22 @@ def test_router_skip_rate_limited_deployments():
|
|||
|
||||
## DEPLOYMENT 1 ##
|
||||
deployment_id = 1
|
||||
total_tokens = 1439
|
||||
standard_logging_payload = create_standard_logging_payload()
|
||||
standard_logging_payload["model_group"] = "azure-model"
|
||||
standard_logging_payload["model_id"] = str(deployment_id)
|
||||
standard_logging_payload["total_tokens"] = total_tokens
|
||||
kwargs = {
|
||||
"litellm_params": {
|
||||
"metadata": {
|
||||
"model_group": "azure-model",
|
||||
},
|
||||
"model_info": {"id": deployment_id},
|
||||
}
|
||||
},
|
||||
"standard_logging_object": standard_logging_payload,
|
||||
}
|
||||
start_time = time.time()
|
||||
response_obj = {"usage": {"total_tokens": 1439}}
|
||||
response_obj = {"usage": {"total_tokens": total_tokens}}
|
||||
end_time = time.time()
|
||||
router.lowesttpm_logger_v2.log_success_event(
|
||||
response_obj=response_obj,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue