bump: version 0.13.6.dev3 → 0.13.6

This commit is contained in:
Krrish Dholakia 2023-11-06 18:19:09 -08:00
parent 28b8321c5a
commit 632533f2e2
9 changed files with 126 additions and 143 deletions

View file

@ -1,8 +1,8 @@
from datetime import datetime
from typing import Dict, List, Optional, Union
import random, threading, time
import litellm
import logging
class Router:
"""
@ -16,8 +16,6 @@ class Router:
"api_version": <your-api-version>,
"api_base": <your-api-base>
},
"tpm": <your-model-tpm>, e.g. 240000
"rpm": <your-model-rpm>, e.g. 1800
}]
router = Router(model_list=model_list)
@ -34,6 +32,11 @@ class Router:
cache_responses: bool = False) -> None:
if model_list:
self.set_model_list(model_list)
self.healthy_deployments = []
### HEALTH CHECK THREAD ### - commenting out as further testing required
# self._start_health_check_thread()
### CACHING ###
if redis_host is not None and redis_port is not None and redis_password is not None:
cache_config = {
'type': 'redis',
@ -45,11 +48,80 @@ class Router:
cache_config = {
"type": "local"
}
self.cache = litellm.Cache(cache_config) # use Redis for tracking load balancing
if cache_responses:
litellm.cache = litellm.Cache(**cache_config) # use Redis for caching completion requests
self.cache_responses = cache_responses
litellm.success_callback = [self.deployment_callback]
def _start_health_check_thread(self):
"""
Starts a separate thread to perform health checks periodically.
"""
health_check_thread = threading.Thread(target=self._perform_health_checks, daemon=True)
health_check_thread.start()
def _perform_health_checks(self):
"""
Periodically performs health checks on the servers.
Updates the list of healthy servers accordingly.
"""
while True:
self.healthy_deployments = self._health_check()
# Adjust the time interval based on your needs
time.sleep(15)
def _health_check(self):
"""
Performs a health check on the deployments
Returns the list of healthy deployments
"""
healthy_deployments = []
for deployment in self.model_list:
litellm_args = deployment["litellm_params"]
try:
start_time = time.time()
litellm.completion(messages=[{"role": "user", "content": ""}], max_tokens=1, **litellm_args) # hit the server with a blank message to see how long it takes to respond
end_time = time.time()
response_time = end_time - start_time
logging.debug(f"response_time: {response_time}")
healthy_deployments.append((deployment, response_time))
healthy_deployments.sort(key=lambda x: x[1])
except Exception as e:
pass
return healthy_deployments
def set_model_list(self, model_list: list):
self.model_list = model_list
self.model_names = [m["model_name"] for m in model_list]
def get_model_names(self):
return self.model_names
def get_available_deployment(self,
model: str,
messages: Optional[List[Dict[str, str]]] = None,
input: Optional[Union[str, List]] = None):
"""
Returns the deployment with the shortest queue
"""
### COMMENTING OUT AS IT NEEDS FURTHER TESTING
# logging.debug(f"self.healthy_deployments: {self.healthy_deployments}")
# if len(self.healthy_deployments) > 0:
# for item in self.healthy_deployments:
# print(f"item: {item}")
# if item[0]["model_name"] == model: # first one in queue will be the one with the most availability
# return item
# else:
potential_deployments = []
for item in self.model_list:
if item["model_name"] == model:
potential_deployments.append(item)
item = random.choice(potential_deployments)
return item
raise ValueError("No models available.")
### COMPLETION + EMBEDDING FUNCTIONS
def completion(self,
model: str,
@ -66,8 +138,12 @@ class Router:
deployment = self.get_available_deployment(model=model, messages=messages)
data = deployment["litellm_params"]
# call via litellm.completion()
# return litellm.completion(**{**data, "messages": messages, "caching": self.cache_responses, **kwargs})
# litellm.set_verbose = True
return litellm.completion(**{**data, "messages": messages, "caching": self.cache_responses, **kwargs})
async def acompletion(self,
model: str,
messages: List[Dict[str, str]],
@ -116,128 +192,4 @@ class Router:
deployment = self.get_available_deployment(model=model, input=input)
data = deployment["litellm_params"]
return await litellm.aembedding(**{**data, "input": input, "caching": self.cache_responses, **kwargs})
def set_model_list(self, model_list: list):
self.model_list = model_list
self.model_names = [m["model_name"] for m in model_list]
def get_model_names(self):
return self.model_names
def deployment_callback(
self,
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
"""
Function LiteLLM submits a callback to after a successful
completion. Purpose of this is ti update TPM/RPM usage per model
"""
model_name = kwargs.get('model', None) # i.e. gpt35turbo
custom_llm_provider = kwargs.get("litellm_params", {}).get('custom_llm_provider', None) # i.e. azure
if custom_llm_provider:
model_name = f"{custom_llm_provider}/{model_name}"
total_tokens = completion_response['usage']['total_tokens']
self._set_deployment_usage(model_name, total_tokens)
def get_available_deployment(self,
model: str,
messages: Optional[List[Dict[str, str]]] = None,
input: Optional[Union[str, List]] = None):
"""
Returns a deployment with the lowest TPM/RPM usage.
"""
# get list of potential deployments
potential_deployments = []
for item in self.model_list:
if item["model_name"] == model:
potential_deployments.append(item)
# set first model as current model to calculate token count
deployment = potential_deployments[0]
# get encoding
token_count = 0
if messages is not None:
token_count = litellm.token_counter(model=deployment["model_name"], messages=messages)
elif input is not None:
if isinstance(input, List):
input_text = "".join(text for text in input)
else:
input_text = input
token_count = litellm.token_counter(model=deployment["model_name"], text=input_text)
# -----------------------
# Find lowest used model
# ----------------------
lowest_tpm = float("inf")
deployment = None
# Go through all the models to get tpm, rpm
for item in potential_deployments:
item_tpm, item_rpm = self._get_deployment_usage(deployment_name=item["litellm_params"]["model"])
if item_tpm == 0:
return item
elif item_tpm + token_count > item["tpm"] or item_rpm + 1 >= item["rpm"]:
continue
elif item_tpm < lowest_tpm:
lowest_tpm = item_tpm
deployment = item
# if none, raise exception
if deployment is None:
raise ValueError("No models available.")
# return model
return deployment
def _get_deployment_usage(
self,
deployment_name: str
):
# ------------
# Setup values
# ------------
current_minute = datetime.now().strftime("%H-%M")
tpm_key = f'{deployment_name}:tpm:{current_minute}'
rpm_key = f'{deployment_name}:rpm:{current_minute}'
# ------------
# Return usage
# ------------
tpm = self.cache.get_cache(cache_key=tpm_key) or 0
rpm = self.cache.get_cache(cache_key=rpm_key) or 0
return int(tpm), int(rpm)
def increment(self, key: str, increment_value: int):
# get value
cached_value = self.cache.get_cache(cache_key=key)
# update value
try:
cached_value = cached_value + increment_value
except:
cached_value = increment_value
# save updated value
self.cache.add_cache(result=cached_value, cache_key=key, ttl=self.default_cache_time_seconds)
def _set_deployment_usage(
self,
model_name: str,
total_tokens: int
):
# ------------
# Setup values
# ------------
current_minute = datetime.now().strftime("%H-%M")
tpm_key = f'{model_name}:tpm:{current_minute}'
rpm_key = f'{model_name}:rpm:{current_minute}'
# ------------
# Update usage
# ------------
self.increment(tpm_key, total_tokens)
self.increment(rpm_key, 1)
return await litellm.aembedding(**{**data, "input": input, "caching": self.cache_responses, **kwargs})