mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
build: Squashed commit of https://github.com/BerriAI/litellm/pull/7165
Closes https://github.com/BerriAI/litellm/pull/7165
This commit is contained in:
parent
b79db3616c
commit
6493eaf2ee
8 changed files with 255 additions and 176 deletions
475
litellm/llms/predibase/chat/handler.py
Normal file
475
litellm/llms/predibase/chat/handler.py
Normal file
|
@ -0,0 +1,475 @@
|
|||
# What is this?
|
||||
## Controller file for Predibase Integration - https://predibase.com/
|
||||
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import traceback
|
||||
import types
|
||||
from enum import Enum
|
||||
from functools import partial
|
||||
from typing import Callable, List, Literal, Optional, Union
|
||||
|
||||
import httpx # type: ignore
|
||||
import requests # type: ignore
|
||||
|
||||
import litellm
|
||||
import litellm.litellm_core_utils
|
||||
import litellm.litellm_core_utils.litellm_logging
|
||||
from litellm import verbose_logger
|
||||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||||
from litellm.llms.custom_httpx.http_handler import (
|
||||
AsyncHTTPHandler,
|
||||
get_async_httpx_client,
|
||||
)
|
||||
from litellm.utils import Choices, CustomStreamWrapper, Message, ModelResponse, Usage
|
||||
|
||||
from ...base import BaseLLM
|
||||
from ...prompt_templates.factory import custom_prompt, prompt_factory
|
||||
from ..common_utils import PredibaseError
|
||||
|
||||
|
||||
async def make_call(
|
||||
client: AsyncHTTPHandler,
|
||||
api_base: str,
|
||||
headers: dict,
|
||||
data: str,
|
||||
model: str,
|
||||
messages: list,
|
||||
logging_obj,
|
||||
timeout: Optional[Union[float, httpx.Timeout]],
|
||||
):
|
||||
response = await client.post(
|
||||
api_base, headers=headers, data=data, stream=True, timeout=timeout
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise PredibaseError(status_code=response.status_code, message=response.text)
|
||||
|
||||
completion_stream = response.aiter_lines()
|
||||
# LOGGING
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key="",
|
||||
original_response=completion_stream, # Pass the completion stream for logging
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
|
||||
return completion_stream
|
||||
|
||||
|
||||
class PredibaseChatCompletion(BaseLLM):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def output_parser(self, generated_text: str):
|
||||
"""
|
||||
Parse the output text to remove any special characters. In our current approach we just check for ChatML tokens.
|
||||
|
||||
Initial issue that prompted this - https://github.com/BerriAI/litellm/issues/763
|
||||
"""
|
||||
chat_template_tokens = [
|
||||
"<|assistant|>",
|
||||
"<|system|>",
|
||||
"<|user|>",
|
||||
"<s>",
|
||||
"</s>",
|
||||
]
|
||||
for token in chat_template_tokens:
|
||||
if generated_text.strip().startswith(token):
|
||||
generated_text = generated_text.replace(token, "", 1)
|
||||
if generated_text.endswith(token):
|
||||
generated_text = generated_text[::-1].replace(token[::-1], "", 1)[::-1]
|
||||
return generated_text
|
||||
|
||||
def process_response( # noqa: PLR0915
|
||||
self,
|
||||
model: str,
|
||||
response: Union[requests.Response, httpx.Response],
|
||||
model_response: ModelResponse,
|
||||
stream: bool,
|
||||
logging_obj: litellm.litellm_core_utils.litellm_logging.Logging,
|
||||
optional_params: dict,
|
||||
api_key: str,
|
||||
data: Union[dict, str],
|
||||
messages: list,
|
||||
print_verbose,
|
||||
encoding,
|
||||
) -> ModelResponse:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=messages,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
try:
|
||||
completion_response = response.json()
|
||||
except Exception:
|
||||
raise PredibaseError(message=response.text, status_code=422)
|
||||
if "error" in completion_response:
|
||||
raise PredibaseError(
|
||||
message=str(completion_response["error"]),
|
||||
status_code=response.status_code,
|
||||
)
|
||||
else:
|
||||
if not isinstance(completion_response, dict):
|
||||
raise PredibaseError(
|
||||
status_code=422,
|
||||
message=f"'completion_response' is not a dictionary - {completion_response}",
|
||||
)
|
||||
elif "generated_text" not in completion_response:
|
||||
raise PredibaseError(
|
||||
status_code=422,
|
||||
message=f"'generated_text' is not a key response dictionary - {completion_response}",
|
||||
)
|
||||
if len(completion_response["generated_text"]) > 0:
|
||||
model_response.choices[0].message.content = self.output_parser( # type: ignore
|
||||
completion_response["generated_text"]
|
||||
)
|
||||
## GETTING LOGPROBS + FINISH REASON
|
||||
if (
|
||||
"details" in completion_response
|
||||
and "tokens" in completion_response["details"]
|
||||
):
|
||||
model_response.choices[0].finish_reason = map_finish_reason(
|
||||
completion_response["details"]["finish_reason"]
|
||||
)
|
||||
sum_logprob = 0
|
||||
for token in completion_response["details"]["tokens"]:
|
||||
if token["logprob"] is not None:
|
||||
sum_logprob += token["logprob"]
|
||||
setattr(
|
||||
model_response.choices[0].message, # type: ignore
|
||||
"_logprob",
|
||||
sum_logprob, # [TODO] move this to using the actual logprobs
|
||||
)
|
||||
if "best_of" in optional_params and optional_params["best_of"] > 1:
|
||||
if (
|
||||
"details" in completion_response
|
||||
and "best_of_sequences" in completion_response["details"]
|
||||
):
|
||||
choices_list = []
|
||||
for idx, item in enumerate(
|
||||
completion_response["details"]["best_of_sequences"]
|
||||
):
|
||||
sum_logprob = 0
|
||||
for token in item["tokens"]:
|
||||
if token["logprob"] is not None:
|
||||
sum_logprob += token["logprob"]
|
||||
if len(item["generated_text"]) > 0:
|
||||
message_obj = Message(
|
||||
content=self.output_parser(item["generated_text"]),
|
||||
logprobs=sum_logprob,
|
||||
)
|
||||
else:
|
||||
message_obj = Message(content=None)
|
||||
choice_obj = Choices(
|
||||
finish_reason=map_finish_reason(item["finish_reason"]),
|
||||
index=idx + 1,
|
||||
message=message_obj,
|
||||
)
|
||||
choices_list.append(choice_obj)
|
||||
model_response.choices.extend(choices_list)
|
||||
|
||||
## CALCULATING USAGE
|
||||
prompt_tokens = 0
|
||||
try:
|
||||
prompt_tokens = litellm.token_counter(messages=messages)
|
||||
except Exception:
|
||||
# this should remain non blocking we should not block a response returning if calculating usage fails
|
||||
pass
|
||||
output_text = model_response["choices"][0]["message"].get("content", "")
|
||||
if output_text is not None and len(output_text) > 0:
|
||||
completion_tokens = 0
|
||||
try:
|
||||
completion_tokens = len(
|
||||
encoding.encode(
|
||||
model_response["choices"][0]["message"].get("content", "")
|
||||
)
|
||||
) ##[TODO] use a model-specific tokenizer
|
||||
except Exception:
|
||||
# this should remain non blocking we should not block a response returning if calculating usage fails
|
||||
pass
|
||||
else:
|
||||
completion_tokens = 0
|
||||
|
||||
total_tokens = prompt_tokens + completion_tokens
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=total_tokens,
|
||||
)
|
||||
model_response.usage = usage # type: ignore
|
||||
|
||||
## RESPONSE HEADERS
|
||||
predibase_headers = response.headers
|
||||
response_headers = {}
|
||||
for k, v in predibase_headers.items():
|
||||
if k.startswith("x-"):
|
||||
response_headers["llm_provider-{}".format(k)] = v
|
||||
|
||||
model_response._hidden_params["additional_headers"] = response_headers
|
||||
|
||||
return model_response
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
custom_prompt_dict: dict,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key: str,
|
||||
logging_obj,
|
||||
optional_params: dict,
|
||||
tenant_id: str,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
acompletion=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers: dict = {},
|
||||
) -> Union[ModelResponse, CustomStreamWrapper]:
|
||||
headers = litellm.PredibaseConfig().validate_environment(
|
||||
api_key=api_key,
|
||||
headers=headers,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
model=model,
|
||||
)
|
||||
completion_url = ""
|
||||
input_text = ""
|
||||
base_url = "https://serving.app.predibase.com"
|
||||
|
||||
if "https" in model:
|
||||
completion_url = model
|
||||
elif api_base:
|
||||
base_url = api_base
|
||||
elif "PREDIBASE_API_BASE" in os.environ:
|
||||
base_url = os.getenv("PREDIBASE_API_BASE", "")
|
||||
|
||||
completion_url = f"{base_url}/{tenant_id}/deployments/v2/llms/{model}"
|
||||
|
||||
if optional_params.get("stream", False) is True:
|
||||
completion_url += "/generate_stream"
|
||||
else:
|
||||
completion_url += "/generate"
|
||||
|
||||
if model in custom_prompt_dict:
|
||||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details["roles"],
|
||||
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
||||
final_prompt_value=model_prompt_details["final_prompt_value"],
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
prompt = prompt_factory(model=model, messages=messages)
|
||||
|
||||
## Load Config
|
||||
config = litellm.PredibaseConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
stream = optional_params.pop("stream", False)
|
||||
|
||||
data = {
|
||||
"inputs": prompt,
|
||||
"parameters": optional_params,
|
||||
}
|
||||
input_text = prompt
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=input_text,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"headers": headers,
|
||||
"api_base": completion_url,
|
||||
"acompletion": acompletion,
|
||||
},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
if acompletion is True:
|
||||
### ASYNC STREAMING
|
||||
if stream is True:
|
||||
return self.async_streaming(
|
||||
model=model,
|
||||
messages=messages,
|
||||
data=data,
|
||||
api_base=completion_url,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
api_key=api_key,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
timeout=timeout,
|
||||
) # type: ignore
|
||||
else:
|
||||
### ASYNC COMPLETION
|
||||
return self.async_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
data=data,
|
||||
api_base=completion_url,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
api_key=api_key,
|
||||
logging_obj=logging_obj,
|
||||
optional_params=optional_params,
|
||||
stream=False,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
headers=headers,
|
||||
timeout=timeout,
|
||||
) # type: ignore
|
||||
|
||||
### SYNC STREAMING
|
||||
if stream is True:
|
||||
response = requests.post(
|
||||
completion_url,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
stream=stream,
|
||||
timeout=timeout, # type: ignore
|
||||
)
|
||||
_response = CustomStreamWrapper(
|
||||
response.iter_lines(),
|
||||
model,
|
||||
custom_llm_provider="predibase",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
return _response
|
||||
### SYNC COMPLETION
|
||||
else:
|
||||
response = requests.post(
|
||||
url=completion_url,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
timeout=timeout, # type: ignore
|
||||
)
|
||||
return self.process_response(
|
||||
model=model,
|
||||
response=response,
|
||||
model_response=model_response,
|
||||
stream=optional_params.get("stream", False),
|
||||
logging_obj=logging_obj, # type: ignore
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
encoding=encoding,
|
||||
)
|
||||
|
||||
async def async_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
stream,
|
||||
data: dict,
|
||||
optional_params: dict,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers={},
|
||||
) -> ModelResponse:
|
||||
|
||||
async_handler = get_async_httpx_client(
|
||||
llm_provider=litellm.LlmProviders.PREDIBASE,
|
||||
params={"timeout": timeout},
|
||||
)
|
||||
try:
|
||||
response = await async_handler.post(
|
||||
api_base, headers=headers, data=json.dumps(data)
|
||||
)
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise PredibaseError(
|
||||
status_code=e.response.status_code,
|
||||
message="HTTPStatusError - received status_code={}, error_message={}".format(
|
||||
e.response.status_code, e.response.text
|
||||
),
|
||||
)
|
||||
except Exception as e:
|
||||
for exception in litellm.LITELLM_EXCEPTION_TYPES:
|
||||
if isinstance(e, exception):
|
||||
raise e
|
||||
raise PredibaseError(
|
||||
status_code=500, message="{}".format(str(e))
|
||||
) # don't use verbose_logger.exception, if exception is raised
|
||||
return self.process_response(
|
||||
model=model,
|
||||
response=response,
|
||||
model_response=model_response,
|
||||
stream=stream,
|
||||
logging_obj=logging_obj,
|
||||
api_key=api_key,
|
||||
data=data,
|
||||
messages=messages,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
encoding=encoding,
|
||||
)
|
||||
|
||||
async def async_streaming(
|
||||
self,
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
data: dict,
|
||||
timeout: Union[float, httpx.Timeout],
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
headers={},
|
||||
) -> CustomStreamWrapper:
|
||||
data["stream"] = True
|
||||
|
||||
streamwrapper = CustomStreamWrapper(
|
||||
completion_stream=None,
|
||||
make_call=partial(
|
||||
make_call,
|
||||
api_base=api_base,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
model=model,
|
||||
messages=messages,
|
||||
logging_obj=logging_obj,
|
||||
timeout=timeout,
|
||||
),
|
||||
model=model,
|
||||
custom_llm_provider="predibase",
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
return streamwrapper
|
||||
|
||||
def embedding(self, *args, **kwargs):
|
||||
pass
|
Loading…
Add table
Add a link
Reference in a new issue