mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
add bedrock image gen async support
This commit is contained in:
parent
3d1c305401
commit
64c3c4906c
4 changed files with 245 additions and 130 deletions
|
@ -1,16 +1,28 @@
|
||||||
import hashlib
|
import hashlib
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
from typing import Dict, List, Optional, Tuple
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
import httpx
|
import httpx
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
from litellm._logging import verbose_logger
|
from litellm._logging import verbose_logger
|
||||||
from litellm.caching.caching import DualCache, InMemoryCache
|
from litellm.caching.caching import DualCache, InMemoryCache
|
||||||
from litellm.secret_managers.main import get_secret
|
from litellm.secret_managers.main import get_secret, get_secret_str
|
||||||
|
|
||||||
from .base import BaseLLM
|
from .base import BaseLLM
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from botocore.credentials import Credentials
|
||||||
|
else:
|
||||||
|
Credentials = Any
|
||||||
|
|
||||||
|
|
||||||
|
class Boto3CredentialsInfo(BaseModel):
|
||||||
|
credentials: Credentials
|
||||||
|
aws_region_name: str
|
||||||
|
aws_bedrock_runtime_endpoint: Optional[str]
|
||||||
|
|
||||||
|
|
||||||
class AwsAuthError(Exception):
|
class AwsAuthError(Exception):
|
||||||
def __init__(self, status_code, message):
|
def __init__(self, status_code, message):
|
||||||
|
@ -311,3 +323,74 @@ class BaseAWSLLM(BaseLLM):
|
||||||
proxy_endpoint_url = endpoint_url
|
proxy_endpoint_url = endpoint_url
|
||||||
|
|
||||||
return endpoint_url, proxy_endpoint_url
|
return endpoint_url, proxy_endpoint_url
|
||||||
|
|
||||||
|
def _get_boto_credentials_from_optional_params(
|
||||||
|
self, optional_params: dict
|
||||||
|
) -> Boto3CredentialsInfo:
|
||||||
|
"""
|
||||||
|
Get boto3 credentials from optional params
|
||||||
|
|
||||||
|
Args:
|
||||||
|
optional_params (dict): Optional parameters for the model call
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Credentials: Boto3 credentials object
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
import boto3
|
||||||
|
from botocore.auth import SigV4Auth
|
||||||
|
from botocore.awsrequest import AWSRequest
|
||||||
|
from botocore.credentials import Credentials
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||||
|
## CREDENTIALS ##
|
||||||
|
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
||||||
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||||
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||||
|
aws_session_token = optional_params.pop("aws_session_token", None)
|
||||||
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
||||||
|
aws_role_name = optional_params.pop("aws_role_name", None)
|
||||||
|
aws_session_name = optional_params.pop("aws_session_name", None)
|
||||||
|
aws_profile_name = optional_params.pop("aws_profile_name", None)
|
||||||
|
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
||||||
|
aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
|
||||||
|
aws_bedrock_runtime_endpoint = optional_params.pop(
|
||||||
|
"aws_bedrock_runtime_endpoint", None
|
||||||
|
) # https://bedrock-runtime.{region_name}.amazonaws.com
|
||||||
|
|
||||||
|
### SET REGION NAME ###
|
||||||
|
if aws_region_name is None:
|
||||||
|
# check env #
|
||||||
|
litellm_aws_region_name = get_secret_str("AWS_REGION_NAME", None)
|
||||||
|
|
||||||
|
if litellm_aws_region_name is not None and isinstance(
|
||||||
|
litellm_aws_region_name, str
|
||||||
|
):
|
||||||
|
aws_region_name = litellm_aws_region_name
|
||||||
|
|
||||||
|
standard_aws_region_name = get_secret_str("AWS_REGION", None)
|
||||||
|
if standard_aws_region_name is not None and isinstance(
|
||||||
|
standard_aws_region_name, str
|
||||||
|
):
|
||||||
|
aws_region_name = standard_aws_region_name
|
||||||
|
|
||||||
|
if aws_region_name is None:
|
||||||
|
aws_region_name = "us-west-2"
|
||||||
|
|
||||||
|
credentials: Credentials = self.get_credentials(
|
||||||
|
aws_access_key_id=aws_access_key_id,
|
||||||
|
aws_secret_access_key=aws_secret_access_key,
|
||||||
|
aws_session_token=aws_session_token,
|
||||||
|
aws_region_name=aws_region_name,
|
||||||
|
aws_session_name=aws_session_name,
|
||||||
|
aws_profile_name=aws_profile_name,
|
||||||
|
aws_role_name=aws_role_name,
|
||||||
|
aws_web_identity_token=aws_web_identity_token,
|
||||||
|
aws_sts_endpoint=aws_sts_endpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
return Boto3CredentialsInfo(
|
||||||
|
credentials=credentials,
|
||||||
|
aws_region_name=aws_region_name,
|
||||||
|
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
|
||||||
|
)
|
||||||
|
|
158
litellm/llms/bedrock/image/image_handler.py
Normal file
158
litellm/llms/bedrock/image/image_handler.py
Normal file
|
@ -0,0 +1,158 @@
|
||||||
|
import copy
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from typing import Any, List, Optional
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
from openai.types.image import Image
|
||||||
|
|
||||||
|
import litellm
|
||||||
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, _get_httpx_client
|
||||||
|
from litellm.types.utils import ImageResponse
|
||||||
|
from litellm.utils import print_verbose
|
||||||
|
|
||||||
|
from ...base_aws_llm import BaseAWSLLM
|
||||||
|
from ..common_utils import BedrockError
|
||||||
|
|
||||||
|
|
||||||
|
class BedrockImageGeneration(BaseAWSLLM):
|
||||||
|
"""
|
||||||
|
Bedrock Image Generation handler
|
||||||
|
"""
|
||||||
|
|
||||||
|
def image_generation( # noqa: PLR0915
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
prompt: str,
|
||||||
|
model_response: ImageResponse,
|
||||||
|
optional_params: dict,
|
||||||
|
logging_obj: Any,
|
||||||
|
timeout=None,
|
||||||
|
aimg_generation: bool = False,
|
||||||
|
api_base: Optional[str] = None,
|
||||||
|
extra_headers: Optional[dict] = None,
|
||||||
|
client: Optional[Any] = None,
|
||||||
|
):
|
||||||
|
try:
|
||||||
|
import boto3
|
||||||
|
from botocore.auth import SigV4Auth
|
||||||
|
from botocore.awsrequest import AWSRequest
|
||||||
|
from botocore.credentials import Credentials
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
|
||||||
|
boto3_credentials_info = self._get_boto_credentials_from_optional_params(
|
||||||
|
optional_params
|
||||||
|
)
|
||||||
|
|
||||||
|
### SET RUNTIME ENDPOINT ###
|
||||||
|
modelId = model
|
||||||
|
endpoint_url, proxy_endpoint_url = self.get_runtime_endpoint(
|
||||||
|
api_base=api_base,
|
||||||
|
aws_bedrock_runtime_endpoint=boto3_credentials_info.aws_bedrock_runtime_endpoint,
|
||||||
|
aws_region_name=boto3_credentials_info.aws_region_name,
|
||||||
|
)
|
||||||
|
proxy_endpoint_url = f"{proxy_endpoint_url}/model/{modelId}/invoke"
|
||||||
|
sigv4 = SigV4Auth(
|
||||||
|
boto3_credentials_info.credentials,
|
||||||
|
"bedrock",
|
||||||
|
boto3_credentials_info.aws_region_name,
|
||||||
|
)
|
||||||
|
|
||||||
|
# transform request
|
||||||
|
### FORMAT IMAGE GENERATION INPUT ###
|
||||||
|
provider = model.split(".")[0]
|
||||||
|
inference_params = copy.deepcopy(optional_params)
|
||||||
|
inference_params.pop(
|
||||||
|
"user", None
|
||||||
|
) # make sure user is not passed in for bedrock call
|
||||||
|
data = {}
|
||||||
|
if provider == "stability":
|
||||||
|
prompt = prompt.replace(os.linesep, " ")
|
||||||
|
## LOAD CONFIG
|
||||||
|
config = litellm.AmazonStabilityConfig.get_config()
|
||||||
|
for k, v in config.items():
|
||||||
|
if (
|
||||||
|
k not in inference_params
|
||||||
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||||
|
inference_params[k] = v
|
||||||
|
data = {"text_prompts": [{"text": prompt, "weight": 1}], **inference_params}
|
||||||
|
else:
|
||||||
|
raise BedrockError(
|
||||||
|
status_code=422, message=f"Unsupported model={model}, passed in"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Make POST Request
|
||||||
|
body = json.dumps(data).encode("utf-8")
|
||||||
|
|
||||||
|
headers = {"Content-Type": "application/json"}
|
||||||
|
if extra_headers is not None:
|
||||||
|
headers = {"Content-Type": "application/json", **extra_headers}
|
||||||
|
request = AWSRequest(
|
||||||
|
method="POST", url=proxy_endpoint_url, data=body, headers=headers
|
||||||
|
)
|
||||||
|
sigv4.add_auth(request)
|
||||||
|
if (
|
||||||
|
extra_headers is not None and "Authorization" in extra_headers
|
||||||
|
): # prevent sigv4 from overwriting the auth header
|
||||||
|
request.headers["Authorization"] = extra_headers["Authorization"]
|
||||||
|
prepped = request.prepare()
|
||||||
|
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(
|
||||||
|
input=prompt,
|
||||||
|
api_key="",
|
||||||
|
additional_args={
|
||||||
|
"complete_input_dict": data,
|
||||||
|
"api_base": proxy_endpoint_url,
|
||||||
|
"headers": prepped.headers,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
if client is None or isinstance(client, AsyncHTTPHandler):
|
||||||
|
_params = {}
|
||||||
|
if timeout is not None:
|
||||||
|
if isinstance(timeout, float) or isinstance(timeout, int):
|
||||||
|
timeout = httpx.Timeout(timeout)
|
||||||
|
_params["timeout"] = timeout
|
||||||
|
client = _get_httpx_client(_params) # type: ignore
|
||||||
|
else:
|
||||||
|
client = client
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = client.post(url=proxy_endpoint_url, headers=prepped.headers, data=body) # type: ignore
|
||||||
|
response.raise_for_status()
|
||||||
|
except httpx.HTTPStatusError as err:
|
||||||
|
error_code = err.response.status_code
|
||||||
|
raise BedrockError(status_code=error_code, message=err.response.text)
|
||||||
|
except httpx.TimeoutException:
|
||||||
|
raise BedrockError(status_code=408, message="Timeout error occurred.")
|
||||||
|
|
||||||
|
response_body = response.json()
|
||||||
|
|
||||||
|
## LOGGING
|
||||||
|
if logging_obj is not None:
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=prompt,
|
||||||
|
api_key="",
|
||||||
|
original_response=response.text,
|
||||||
|
additional_args={"complete_input_dict": data},
|
||||||
|
)
|
||||||
|
print_verbose("raw model_response: %s", response.text)
|
||||||
|
|
||||||
|
### FORMAT RESPONSE TO OPENAI FORMAT ###
|
||||||
|
if response_body is None:
|
||||||
|
raise Exception("Error in response object format")
|
||||||
|
|
||||||
|
if model_response is None:
|
||||||
|
model_response = ImageResponse()
|
||||||
|
|
||||||
|
image_list: List[Image] = []
|
||||||
|
for artifact in response_body["artifacts"]:
|
||||||
|
_image = Image(b64_json=artifact["base64"])
|
||||||
|
image_list.append(_image)
|
||||||
|
|
||||||
|
model_response.data = image_list
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
async def async_image_generation(self):
|
||||||
|
pass
|
|
@ -1,127 +0,0 @@
|
||||||
"""
|
|
||||||
Handles image gen calls to Bedrock's `/invoke` endpoint
|
|
||||||
"""
|
|
||||||
|
|
||||||
import copy
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
from typing import Any, List
|
|
||||||
|
|
||||||
from openai.types.image import Image
|
|
||||||
|
|
||||||
import litellm
|
|
||||||
from litellm.types.utils import ImageResponse
|
|
||||||
|
|
||||||
from .common_utils import BedrockError, init_bedrock_client
|
|
||||||
|
|
||||||
|
|
||||||
def image_generation(
|
|
||||||
model: str,
|
|
||||||
prompt: str,
|
|
||||||
model_response: ImageResponse,
|
|
||||||
optional_params: dict,
|
|
||||||
logging_obj: Any,
|
|
||||||
timeout=None,
|
|
||||||
aimg_generation=False,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Bedrock Image Gen endpoint support
|
|
||||||
"""
|
|
||||||
### BOTO3 INIT ###
|
|
||||||
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
|
||||||
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
||||||
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
||||||
aws_region_name = optional_params.pop("aws_region_name", None)
|
|
||||||
aws_role_name = optional_params.pop("aws_role_name", None)
|
|
||||||
aws_session_name = optional_params.pop("aws_session_name", None)
|
|
||||||
aws_bedrock_runtime_endpoint = optional_params.pop(
|
|
||||||
"aws_bedrock_runtime_endpoint", None
|
|
||||||
)
|
|
||||||
aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
|
|
||||||
|
|
||||||
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
|
|
||||||
client = init_bedrock_client(
|
|
||||||
aws_access_key_id=aws_access_key_id,
|
|
||||||
aws_secret_access_key=aws_secret_access_key,
|
|
||||||
aws_region_name=aws_region_name,
|
|
||||||
aws_bedrock_runtime_endpoint=aws_bedrock_runtime_endpoint,
|
|
||||||
aws_web_identity_token=aws_web_identity_token,
|
|
||||||
aws_role_name=aws_role_name,
|
|
||||||
aws_session_name=aws_session_name,
|
|
||||||
timeout=timeout,
|
|
||||||
)
|
|
||||||
|
|
||||||
### FORMAT IMAGE GENERATION INPUT ###
|
|
||||||
modelId = model
|
|
||||||
provider = model.split(".")[0]
|
|
||||||
inference_params = copy.deepcopy(optional_params)
|
|
||||||
inference_params.pop(
|
|
||||||
"user", None
|
|
||||||
) # make sure user is not passed in for bedrock call
|
|
||||||
data = {}
|
|
||||||
if provider == "stability":
|
|
||||||
prompt = prompt.replace(os.linesep, " ")
|
|
||||||
## LOAD CONFIG
|
|
||||||
config = litellm.AmazonStabilityConfig.get_config()
|
|
||||||
for k, v in config.items():
|
|
||||||
if (
|
|
||||||
k not in inference_params
|
|
||||||
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
||||||
inference_params[k] = v
|
|
||||||
data = {"text_prompts": [{"text": prompt, "weight": 1}], **inference_params}
|
|
||||||
else:
|
|
||||||
raise BedrockError(
|
|
||||||
status_code=422, message=f"Unsupported model={model}, passed in"
|
|
||||||
)
|
|
||||||
|
|
||||||
body = json.dumps(data).encode("utf-8")
|
|
||||||
## LOGGING
|
|
||||||
request_str = f"""
|
|
||||||
response = client.invoke_model(
|
|
||||||
body={body}, # type: ignore
|
|
||||||
modelId={modelId},
|
|
||||||
accept="application/json",
|
|
||||||
contentType="application/json",
|
|
||||||
)""" # type: ignore
|
|
||||||
logging_obj.pre_call(
|
|
||||||
input=prompt,
|
|
||||||
api_key="", # boto3 is used for init.
|
|
||||||
additional_args={
|
|
||||||
"complete_input_dict": {"model": modelId, "texts": prompt},
|
|
||||||
"request_str": request_str,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
try:
|
|
||||||
response = client.invoke_model(
|
|
||||||
body=body,
|
|
||||||
modelId=modelId,
|
|
||||||
accept="application/json",
|
|
||||||
contentType="application/json",
|
|
||||||
)
|
|
||||||
response_body = json.loads(response.get("body").read())
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.post_call(
|
|
||||||
input=prompt,
|
|
||||||
api_key="",
|
|
||||||
additional_args={"complete_input_dict": data},
|
|
||||||
original_response=json.dumps(response_body),
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
raise BedrockError(
|
|
||||||
message=f"Embedding Error with model {model}: {e}", status_code=500
|
|
||||||
)
|
|
||||||
|
|
||||||
### FORMAT RESPONSE TO OPENAI FORMAT ###
|
|
||||||
if response_body is None:
|
|
||||||
raise Exception("Error in response object format")
|
|
||||||
|
|
||||||
if model_response is None:
|
|
||||||
model_response = ImageResponse()
|
|
||||||
|
|
||||||
image_list: List[Image] = []
|
|
||||||
for artifact in response_body["artifacts"]:
|
|
||||||
_image = Image(b64_json=artifact["base64"])
|
|
||||||
image_list.append(_image)
|
|
||||||
|
|
||||||
model_response.data = image_list
|
|
||||||
return model_response
|
|
|
@ -108,9 +108,9 @@ from .llms.azure_text import AzureTextCompletion
|
||||||
from .llms.AzureOpenAI.audio_transcriptions import AzureAudioTranscription
|
from .llms.AzureOpenAI.audio_transcriptions import AzureAudioTranscription
|
||||||
from .llms.AzureOpenAI.azure import AzureChatCompletion, _check_dynamic_azure_params
|
from .llms.AzureOpenAI.azure import AzureChatCompletion, _check_dynamic_azure_params
|
||||||
from .llms.AzureOpenAI.chat.o1_handler import AzureOpenAIO1ChatCompletion
|
from .llms.AzureOpenAI.chat.o1_handler import AzureOpenAIO1ChatCompletion
|
||||||
from .llms.bedrock import image_generation as bedrock_image_generation # type: ignore
|
|
||||||
from .llms.bedrock.chat import BedrockConverseLLM, BedrockLLM
|
from .llms.bedrock.chat import BedrockConverseLLM, BedrockLLM
|
||||||
from .llms.bedrock.embed.embedding import BedrockEmbedding
|
from .llms.bedrock.embed.embedding import BedrockEmbedding
|
||||||
|
from .llms.bedrock.image.image_handler import BedrockImageGeneration
|
||||||
from .llms.cohere import chat as cohere_chat
|
from .llms.cohere import chat as cohere_chat
|
||||||
from .llms.cohere import completion as cohere_completion # type: ignore
|
from .llms.cohere import completion as cohere_completion # type: ignore
|
||||||
from .llms.cohere.embed import handler as cohere_embed
|
from .llms.cohere.embed import handler as cohere_embed
|
||||||
|
@ -214,6 +214,7 @@ triton_chat_completions = TritonChatCompletion()
|
||||||
bedrock_chat_completion = BedrockLLM()
|
bedrock_chat_completion = BedrockLLM()
|
||||||
bedrock_converse_chat_completion = BedrockConverseLLM()
|
bedrock_converse_chat_completion = BedrockConverseLLM()
|
||||||
bedrock_embedding = BedrockEmbedding()
|
bedrock_embedding = BedrockEmbedding()
|
||||||
|
bedrock_image_generation = BedrockImageGeneration()
|
||||||
vertex_chat_completion = VertexLLM()
|
vertex_chat_completion = VertexLLM()
|
||||||
vertex_embedding = VertexEmbedding()
|
vertex_embedding = VertexEmbedding()
|
||||||
vertex_multimodal_embedding = VertexMultimodalEmbedding()
|
vertex_multimodal_embedding = VertexMultimodalEmbedding()
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue