mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
Merge branch 'main' into litellm_global_spend_updates
This commit is contained in:
commit
6501fdb76e
11 changed files with 166 additions and 24 deletions
|
@ -7,8 +7,11 @@ handler = logging.StreamHandler()
|
|||
handler.setLevel(logging.DEBUG)
|
||||
|
||||
# Create a formatter and set it for the handler
|
||||
formatter = logging.Formatter(
|
||||
"\033[92m%(asctime)s - %(name)s:%(levelname)s\033[0m: %(message)s",
|
||||
datefmt="%H:%M:%S",
|
||||
)
|
||||
|
||||
formatter = logging.Formatter("\033[92m%(name)s - %(levelname)s\033[0m: %(message)s")
|
||||
|
||||
handler.setFormatter(formatter)
|
||||
|
||||
|
|
|
@ -220,8 +220,10 @@ def get_ollama_response(
|
|||
model_response["choices"][0]["message"] = response_json["message"]
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = "ollama/" + model
|
||||
prompt_tokens = response_json.get("prompt_eval_count", len(encoding.encode(prompt))) # type: ignore
|
||||
completion_tokens = response_json["eval_count"]
|
||||
prompt_tokens = response_json.get("prompt_eval_count", litellm.token_counter(messages=messages)) # type: ignore
|
||||
completion_tokens = response_json.get(
|
||||
"eval_count", litellm.token_counter(text=response_json["message"])
|
||||
)
|
||||
model_response["usage"] = litellm.Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
|
@ -320,8 +322,10 @@ async def ollama_acompletion(url, data, model_response, encoding, logging_obj):
|
|||
model_response["choices"][0]["message"] = response_json["message"]
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = "ollama/" + data["model"]
|
||||
prompt_tokens = response_json.get("prompt_eval_count", len(encoding.encode(prompt))) # type: ignore
|
||||
completion_tokens = response_json["eval_count"]
|
||||
prompt_tokens = response_json.get("prompt_eval_count", litellm.token_counter(messages=data["messages"])) # type: ignore
|
||||
completion_tokens = response_json.get(
|
||||
"eval_count", litellm.token_counter(text=response_json["message"])
|
||||
)
|
||||
model_response["usage"] = litellm.Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
|
|
|
@ -343,8 +343,7 @@ class LiteLLM_SpendLogs(LiteLLMBase):
|
|||
endTime: Union[str, datetime, None]
|
||||
user: Optional[str] = ""
|
||||
modelParameters: Optional[Json] = {}
|
||||
messages: Optional[Json] = []
|
||||
response: Optional[Json] = {}
|
||||
usage: Optional[Json] = {}
|
||||
metadata: Optional[Json] = {}
|
||||
cache_hit: Optional[str] = "False"
|
||||
cache_key: Optional[str] = None
|
||||
|
|
|
@ -67,6 +67,8 @@ litellm_settings:
|
|||
|
||||
general_settings:
|
||||
master_key: sk-1234
|
||||
alerting: ["slack"]
|
||||
alerting_threshold: 10 # sends alerts if requests hang for 2 seconds
|
||||
# database_type: "dynamo_db"
|
||||
# database_args: { # 👈 all args - https://github.com/BerriAI/litellm/blob/befbcbb7ac8f59835ce47415c128decf37aac328/litellm/proxy/_types.py#L190
|
||||
# "billing_mode": "PAY_PER_REQUEST",
|
||||
|
|
|
@ -626,6 +626,12 @@ async def track_cost_callback(
|
|||
"user_api_key_user_id", None
|
||||
)
|
||||
|
||||
if kwargs.get("cache_hit", False) == True:
|
||||
response_cost = 0.0
|
||||
verbose_proxy_logger.info(
|
||||
f"Cache Hit: response_cost {response_cost}, for user_id {user_id}"
|
||||
)
|
||||
|
||||
verbose_proxy_logger.info(
|
||||
f"response_cost {response_cost}, for user_id {user_id}"
|
||||
)
|
||||
|
@ -1429,8 +1435,6 @@ async def initialize(
|
|||
verbose_proxy_logger.setLevel(
|
||||
level=logging.DEBUG
|
||||
) # set proxy logs to debug
|
||||
litellm.set_verbose = True
|
||||
|
||||
dynamic_config = {"general": {}, user_model: {}}
|
||||
if config:
|
||||
(
|
||||
|
@ -1956,6 +1960,8 @@ async def chat_completion(
|
|||
else: # router is not set
|
||||
response = await litellm.acompletion(**data)
|
||||
|
||||
# Post Call Processing
|
||||
data["litellm_status"] = "success" # used for alerting
|
||||
if hasattr(response, "_hidden_params"):
|
||||
model_id = response._hidden_params.get("model_id", None) or ""
|
||||
else:
|
||||
|
@ -2141,6 +2147,7 @@ async def embeddings(
|
|||
response = await litellm.aembedding(**data)
|
||||
|
||||
### ALERTING ###
|
||||
data["litellm_status"] = "success" # used for alerting
|
||||
end_time = time.time()
|
||||
asyncio.create_task(
|
||||
proxy_logging_obj.response_taking_too_long(
|
||||
|
@ -2256,6 +2263,7 @@ async def image_generation(
|
|||
response = await litellm.aimage_generation(**data)
|
||||
|
||||
### ALERTING ###
|
||||
data["litellm_status"] = "success" # used for alerting
|
||||
end_time = time.time()
|
||||
asyncio.create_task(
|
||||
proxy_logging_obj.response_taking_too_long(
|
||||
|
|
|
@ -58,4 +58,5 @@ model LiteLLM_SpendLogs {
|
|||
usage Json @default("{}")
|
||||
metadata Json @default("{}")
|
||||
cache_hit String @default("")
|
||||
cache_key String @default("")
|
||||
}
|
|
@ -97,7 +97,7 @@ class ProxyLogging:
|
|||
3. /image/generation
|
||||
"""
|
||||
### ALERTING ###
|
||||
asyncio.create_task(self.response_taking_too_long())
|
||||
asyncio.create_task(self.response_taking_too_long(request_data=data))
|
||||
|
||||
try:
|
||||
for callback in litellm.callbacks:
|
||||
|
@ -137,24 +137,47 @@ class ProxyLogging:
|
|||
start_time: Optional[float] = None,
|
||||
end_time: Optional[float] = None,
|
||||
type: Literal["hanging_request", "slow_response"] = "hanging_request",
|
||||
request_data: Optional[dict] = None,
|
||||
):
|
||||
if request_data is not None:
|
||||
model = request_data.get("model", "")
|
||||
messages = request_data.get("messages", "")
|
||||
# try casting messages to str and get the first 100 characters, else mark as None
|
||||
try:
|
||||
messages = str(messages)
|
||||
messages = messages[:10000]
|
||||
except:
|
||||
messages = None
|
||||
|
||||
request_info = f"\nRequest Model: {model}\nMessages: {messages}"
|
||||
else:
|
||||
request_info = ""
|
||||
|
||||
if type == "hanging_request":
|
||||
# Simulate a long-running operation that could take more than 5 minutes
|
||||
await asyncio.sleep(
|
||||
self.alerting_threshold
|
||||
) # Set it to 5 minutes - i'd imagine this might be different for streaming, non-streaming, non-completion (embedding + img) requests
|
||||
|
||||
if (
|
||||
request_data is not None
|
||||
and request_data.get("litellm_status", "") != "success"
|
||||
):
|
||||
# only alert hanging responses if they have not been marked as success
|
||||
alerting_message = (
|
||||
f"Requests are hanging - {self.alerting_threshold}s+ request time"
|
||||
)
|
||||
await self.alerting_handler(
|
||||
message=f"Requests are hanging - {self.alerting_threshold}s+ request time",
|
||||
message=alerting_message + request_info,
|
||||
level="Medium",
|
||||
)
|
||||
|
||||
elif (
|
||||
type == "slow_response" and start_time is not None and end_time is not None
|
||||
):
|
||||
slow_message = f"Responses are slow - {round(end_time-start_time,2)}s response time > Alerting threshold: {self.alerting_threshold}s"
|
||||
if end_time - start_time > self.alerting_threshold:
|
||||
await self.alerting_handler(
|
||||
message=f"Responses are slow - {round(end_time-start_time,2)}s response time",
|
||||
message=slow_message + request_info,
|
||||
level="Low",
|
||||
)
|
||||
|
||||
|
@ -173,7 +196,13 @@ class ProxyLogging:
|
|||
level: str - Low|Medium|High - if calls might fail (Medium) or are failing (High); Currently, no alerts would be 'Low'.
|
||||
message: str - what is the alert about
|
||||
"""
|
||||
formatted_message = f"Level: {level}\n\nMessage: {message}"
|
||||
from datetime import datetime
|
||||
|
||||
# Get the current timestamp
|
||||
current_time = datetime.now().strftime("%H:%M:%S")
|
||||
formatted_message = (
|
||||
f"Level: {level}\nTimestamp: {current_time}\n\nMessage: {message}"
|
||||
)
|
||||
if self.alerting is None:
|
||||
return
|
||||
|
||||
|
@ -184,7 +213,9 @@ class ProxyLogging:
|
|||
raise Exception("Missing SLACK_WEBHOOK_URL from environment")
|
||||
payload = {"text": formatted_message}
|
||||
headers = {"Content-type": "application/json"}
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with aiohttp.ClientSession(
|
||||
connector=aiohttp.TCPConnector(ssl=False)
|
||||
) as session:
|
||||
async with session.post(
|
||||
slack_webhook_url, json=payload, headers=headers
|
||||
) as response:
|
||||
|
@ -972,11 +1003,18 @@ def get_logging_payload(kwargs, response_obj, start_time, end_time):
|
|||
if api_key is not None and isinstance(api_key, str) and api_key.startswith("sk-"):
|
||||
# hash the api_key
|
||||
api_key = hash_token(api_key)
|
||||
|
||||
if "headers" in metadata and "authorization" in metadata["headers"]:
|
||||
metadata["headers"].pop(
|
||||
"authorization"
|
||||
) # do not store the original `sk-..` api key in the db
|
||||
if litellm.cache is not None:
|
||||
cache_key = litellm.cache.get_cache_key(**kwargs)
|
||||
else:
|
||||
cache_key = "Cache OFF"
|
||||
if cache_hit == True:
|
||||
import time
|
||||
|
||||
id = f"{id}_cache_hit{time.time()}" # SpendLogs does not allow duplicate request_id
|
||||
|
||||
payload = {
|
||||
"request_id": id,
|
||||
|
@ -990,6 +1028,7 @@ def get_logging_payload(kwargs, response_obj, start_time, end_time):
|
|||
"modelParameters": optional_params,
|
||||
"usage": usage,
|
||||
"metadata": metadata,
|
||||
"cache_key": cache_key,
|
||||
}
|
||||
|
||||
json_fields = [
|
||||
|
|
|
@ -888,6 +888,9 @@ def test_call_with_key_over_budget(prisma_client):
|
|||
# update spend using track_cost callback, make 2nd request, it should fail
|
||||
from litellm.proxy.proxy_server import track_cost_callback
|
||||
from litellm import ModelResponse, Choices, Message, Usage
|
||||
from litellm.caching import Cache
|
||||
|
||||
litellm.cache = Cache()
|
||||
import time
|
||||
|
||||
request_id = f"chatcmpl-e41836bb-bb8b-4df2-8e70-8f3e160155ac{time.time()}"
|
||||
|
@ -935,6 +938,10 @@ def test_call_with_key_over_budget(prisma_client):
|
|||
assert spend_log.request_id == request_id
|
||||
assert spend_log.spend == float("2e-05")
|
||||
assert spend_log.model == "chatgpt-v-2"
|
||||
assert (
|
||||
spend_log.cache_key
|
||||
== "a61ae14fe4a8b8014a61e6ae01a100c8bc6770ac37c293242afed954bc69207d"
|
||||
)
|
||||
|
||||
# use generated key to auth in
|
||||
result = await user_api_key_auth(request=request, api_key=bearer_token)
|
||||
|
@ -948,6 +955,76 @@ def test_call_with_key_over_budget(prisma_client):
|
|||
print(vars(e))
|
||||
|
||||
|
||||
@pytest.mark.asyncio()
|
||||
async def test_call_with_key_never_over_budget(prisma_client):
|
||||
# Make a call with a key with budget=None, it should never fail
|
||||
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
|
||||
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
|
||||
try:
|
||||
await litellm.proxy.proxy_server.prisma_client.connect()
|
||||
request = GenerateKeyRequest(max_budget=None)
|
||||
key = await generate_key_fn(request)
|
||||
print(key)
|
||||
|
||||
generated_key = key.key
|
||||
user_id = key.user_id
|
||||
bearer_token = "Bearer " + generated_key
|
||||
|
||||
request = Request(scope={"type": "http"})
|
||||
request._url = URL(url="/chat/completions")
|
||||
|
||||
# use generated key to auth in
|
||||
result = await user_api_key_auth(request=request, api_key=bearer_token)
|
||||
print("result from user auth with new key", result)
|
||||
|
||||
# update spend using track_cost callback, make 2nd request, it should fail
|
||||
from litellm.proxy.proxy_server import track_cost_callback
|
||||
from litellm import ModelResponse, Choices, Message, Usage
|
||||
import time
|
||||
|
||||
request_id = f"chatcmpl-e41836bb-bb8b-4df2-8e70-8f3e160155ac{time.time()}"
|
||||
|
||||
resp = ModelResponse(
|
||||
id=request_id,
|
||||
choices=[
|
||||
Choices(
|
||||
finish_reason=None,
|
||||
index=0,
|
||||
message=Message(
|
||||
content=" Sure! Here is a short poem about the sky:\n\nA canvas of blue, a",
|
||||
role="assistant",
|
||||
),
|
||||
)
|
||||
],
|
||||
model="gpt-35-turbo", # azure always has model written like this
|
||||
usage=Usage(
|
||||
prompt_tokens=210000, completion_tokens=200000, total_tokens=41000
|
||||
),
|
||||
)
|
||||
await track_cost_callback(
|
||||
kwargs={
|
||||
"model": "chatgpt-v-2",
|
||||
"stream": False,
|
||||
"litellm_params": {
|
||||
"metadata": {
|
||||
"user_api_key": generated_key,
|
||||
"user_api_key_user_id": user_id,
|
||||
}
|
||||
},
|
||||
"response_cost": 200000,
|
||||
},
|
||||
completion_response=resp,
|
||||
start_time=datetime.now(),
|
||||
end_time=datetime.now(),
|
||||
)
|
||||
|
||||
# use generated key to auth in
|
||||
result = await user_api_key_auth(request=request, api_key=bearer_token)
|
||||
print("result from user auth with new key", result)
|
||||
except Exception as e:
|
||||
pytest.fail(f"This should have not failed!. They key uses max_budget=None. {e}")
|
||||
|
||||
|
||||
@pytest.mark.asyncio()
|
||||
async def test_call_with_key_over_budget_stream(prisma_client):
|
||||
# 14. Make a call with a key over budget, expect to fail
|
||||
|
|
|
@ -2877,8 +2877,13 @@ def token_counter(
|
|||
print_verbose(
|
||||
f"Token Counter - using generic token counter, for model={model}"
|
||||
)
|
||||
enc = tokenizer_json["tokenizer"].encode(text)
|
||||
num_tokens = len(enc)
|
||||
num_tokens = openai_token_counter(
|
||||
text=text, # type: ignore
|
||||
model="gpt-3.5-turbo",
|
||||
messages=messages,
|
||||
is_tool_call=is_tool_call,
|
||||
count_response_tokens=count_response_tokens,
|
||||
)
|
||||
else:
|
||||
num_tokens = len(encoding.encode(text)) # type: ignore
|
||||
return num_tokens
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "litellm"
|
||||
version = "1.19.0"
|
||||
version = "1.19.1"
|
||||
description = "Library to easily interface with LLM API providers"
|
||||
authors = ["BerriAI"]
|
||||
license = "MIT"
|
||||
|
@ -63,7 +63,7 @@ requires = ["poetry-core", "wheel"]
|
|||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.commitizen]
|
||||
version = "1.19.0"
|
||||
version = "1.19.1"
|
||||
version_files = [
|
||||
"pyproject.toml:^version"
|
||||
]
|
||||
|
|
|
@ -7,6 +7,7 @@ generator client {
|
|||
provider = "prisma-client-py"
|
||||
}
|
||||
|
||||
// Track spend, rate limit, budget Users
|
||||
model LiteLLM_UserTable {
|
||||
user_id String @unique
|
||||
team_id String?
|
||||
|
@ -21,7 +22,7 @@ model LiteLLM_UserTable {
|
|||
budget_reset_at DateTime?
|
||||
}
|
||||
|
||||
// required for token gen
|
||||
// Generate Tokens for Proxy
|
||||
model LiteLLM_VerificationToken {
|
||||
token String @unique
|
||||
spend Float @default(0.0)
|
||||
|
@ -40,11 +41,13 @@ model LiteLLM_VerificationToken {
|
|||
budget_reset_at DateTime?
|
||||
}
|
||||
|
||||
// store proxy config.yaml
|
||||
model LiteLLM_Config {
|
||||
param_name String @id
|
||||
param_value Json?
|
||||
}
|
||||
|
||||
// View spend, model, api_key per request
|
||||
model LiteLLM_SpendLogs {
|
||||
request_id String @unique
|
||||
call_type String
|
||||
|
@ -58,4 +61,5 @@ model LiteLLM_SpendLogs {
|
|||
usage Json @default("{}")
|
||||
metadata Json @default("{}")
|
||||
cache_hit String @default("")
|
||||
cache_key String @default("")
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue