refactor(proxy_server.py): refactoring background rq worker

This commit is contained in:
Krrish Dholakia 2023-11-21 13:47:00 -08:00
parent 760a465bd2
commit 68c955409d
4 changed files with 52 additions and 43 deletions

View file

@ -393,5 +393,5 @@ from .exceptions import (
)
from .budget_manager import BudgetManager
from .proxy.proxy_cli import run_server
from .proxy.queue.rq import start_rq_worker_in_background
from .router import Router
from .proxy.proxy_server import litellm_queue_completion

View file

@ -98,7 +98,7 @@ from fastapi.middleware.cors import CORSMiddleware
from fastapi.security import OAuth2PasswordBearer
import json
import logging
from litellm import start_rq_worker_in_background
# from litellm.proxy.queue import start_rq_worker_in_background
app = FastAPI(docs_url="/", title="LiteLLM API")
router = APIRouter()
@ -149,6 +149,12 @@ def print_verbose(print_statement):
print(print_statement)
def litellm_queue_completion(*args, **kwargs):
call_type = kwargs.pop("call_type")
llm_router: litellm.Router = kwargs.pop("llm_router")
return llm_router.completion(**kwargs)
def usage_telemetry(
feature: str,
): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
@ -215,7 +221,7 @@ def rq_setup(use_queue: bool):
from rq.job import Job
redis_job = Job
start_rq_worker_in_background()
# start_rq_worker_in_background()
redis_connection = Redis(host=os.getenv("REDIS_HOST"), port=os.getenv("REDIS_PORT"), password=os.getenv("REDIS_PASSWORD"))
request_queue = Queue(connection=redis_connection)
@ -387,10 +393,11 @@ def initialize(
if experimental:
pass
if save:
save_params_to_config(dynamic_config)
with open(user_config_path) as f:
print(f.read())
print("\033[1;32mDone successfully\033[0m")
pass
# save_params_to_config(dynamic_config)
# with open(user_config_path) as f:
# print(f.read())
# print("\033[1;32mDone successfully\033[0m")
user_telemetry = telemetry
usage_telemetry(feature="local_proxy_server")
@ -435,7 +442,7 @@ def litellm_completion(*args, **kwargs):
if 'stream' in kwargs and kwargs['stream'] == True: # use generate_responses to stream responses
return StreamingResponse(data_generator(response), media_type='text/event-stream')
return response
@app.on_event("startup")
async def startup_event():
global prisma_client
@ -575,7 +582,7 @@ async def generate_key_fn(request: Request):
@router.post("/queue/request", dependencies=[Depends(user_api_key_auth)])
async def async_chat_completions(request: Request):
global request_queue
global request_queue, llm_router
body = await request.body()
body_str = body.decode()
try:
@ -588,7 +595,8 @@ async def async_chat_completions(request: Request):
or data["model"] # default passed in http request
)
data["call_type"] = "chat_completion"
job = request_queue.enqueue(litellm_completion, **data)
data["llm_router"] = llm_router
job = request_queue.enqueue(litellm.litellm_queue_completion, **data)
return {"id": job.id, "url": f"/queue/response/{job.id}", "eta": 5, "status": "queued"}
pass
@ -597,8 +605,11 @@ async def async_chat_completions(request: Request, task_id: str):
global redis_connection, redis_job
try:
job = redis_job.fetch(id=task_id, connection=redis_connection)
print(f"job status: {job.get_status()}")
result = job.result
status = job.get_status()
print(f"job status: {status}; job result: {result}")
if status == "failed":
print(f"job: {job.exc_info}")
status = "queued"
if result is not None:
status = "finished"

View file

@ -1,32 +0,0 @@
import os
import subprocess
import sys
import multiprocessing
from dotenv import load_dotenv
load_dotenv()
def run_rq_worker(redis_url):
command = ["rq", "worker", "--url", redis_url]
subprocess.run(command)
def start_rq_worker_in_background():
# Set OBJC_DISABLE_INITIALIZE_FORK_SAFETY to YES
os.environ["OBJC_DISABLE_INITIALIZE_FORK_SAFETY"] = "YES"
# Check if required environment variables are set
required_vars = ["REDIS_USERNAME", "REDIS_PASSWORD", "REDIS_HOST", "REDIS_PORT"]
missing_vars = [var for var in required_vars if var not in os.environ]
if missing_vars:
print(f"Error: Redis environment variables not set. Please set {', '.join(missing_vars)}.")
sys.exit(1)
# Construct Redis URL
REDIS_URL = f"redis://{os.environ['REDIS_USERNAME']}:{os.environ['REDIS_PASSWORD']}@{os.environ['REDIS_HOST']}:{os.environ['REDIS_PORT']}"
# Run rq worker in a separate process
worker_process = multiprocessing.Process(target=run_rq_worker, args=(REDIS_URL,))
worker_process.start()
if __name__ == "__main__":
start_rq_worker_in_background()

View file

@ -0,0 +1,30 @@
import sys, os
from rq import Worker, Queue, Connection
from redis import Redis
from dotenv import load_dotenv
load_dotenv()
# Add the path to the local folder to sys.path
sys.path.insert(
0, os.path.abspath("../../..")
) # Adds the parent directory to the system path - for litellm local dev
# # Import your local module
# import litellm
# from litellm import litellm_queue_completion
# Set up RQ connection
redis_conn = Redis(host=os.getenv("REDIS_HOST"), port=os.getenv("REDIS_PORT"), password=os.getenv("REDIS_PASSWORD"))
print(redis_conn.ping()) # Should print True if connected successfully
# Create a worker and add the queue
try:
queue = Queue(connection=redis_conn)
worker = Worker([queue], connection=redis_conn)
except Exception as e:
print(f"Error setting up worker: {e}")
exit()
# Run the worker
if __name__ == '__main__':
with Connection(redis_conn):
worker.work()