mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
Merge branch 'main' into litellm_ui_cache_control_hook_anthropic
This commit is contained in:
commit
690c5ac3c0
10 changed files with 744 additions and 22 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -73,6 +73,7 @@ tests/local_testing/log.txt
|
|||
.codegpt
|
||||
litellm/proxy/_new_new_secret_config.yaml
|
||||
litellm/proxy/custom_guardrail.py
|
||||
.mypy_cache/*
|
||||
litellm/proxy/_experimental/out/404.html
|
||||
litellm/proxy/_experimental/out/404.html
|
||||
litellm/proxy/_experimental/out/model_hub.html
|
||||
|
|
|
@ -188,7 +188,7 @@ const sidebars = {
|
|||
"providers/azure_ai",
|
||||
"providers/aiml",
|
||||
"providers/vertex",
|
||||
|
||||
|
||||
{
|
||||
type: "category",
|
||||
label: "Google AI Studio",
|
||||
|
@ -340,7 +340,7 @@ const sidebars = {
|
|||
},
|
||||
"rerank",
|
||||
"assistants",
|
||||
|
||||
|
||||
{
|
||||
type: "category",
|
||||
label: "/files",
|
||||
|
@ -407,9 +407,9 @@ const sidebars = {
|
|||
type: "category",
|
||||
label: "Logging & Observability",
|
||||
items: [
|
||||
"observability/langfuse_integration",
|
||||
"observability/lunary_integration",
|
||||
"observability/mlflow",
|
||||
"observability/langfuse_integration",
|
||||
"observability/gcs_bucket_integration",
|
||||
"observability/langsmith_integration",
|
||||
"observability/literalai_integration",
|
||||
|
|
356
litellm/llms/cohere/chat/v2_transformation.py
Normal file
356
litellm/llms/cohere/chat/v2_transformation.py
Normal file
|
@ -0,0 +1,356 @@
|
|||
import time
|
||||
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.litellm_core_utils.prompt_templates.factory import cohere_messages_pt_v2
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
||||
from litellm.types.llms.cohere import CohereV2ChatResponse
|
||||
from litellm.types.llms.openai import AllMessageValues, ChatCompletionToolCallChunk
|
||||
from litellm.types.utils import ModelResponse, Usage
|
||||
|
||||
from ..common_utils import CohereError
|
||||
from ..common_utils import ModelResponseIterator as CohereModelResponseIterator
|
||||
from ..common_utils import validate_environment as cohere_validate_environment
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
LiteLLMLoggingObj = _LiteLLMLoggingObj
|
||||
else:
|
||||
LiteLLMLoggingObj = Any
|
||||
|
||||
|
||||
class CohereV2ChatConfig(BaseConfig):
|
||||
"""
|
||||
Configuration class for Cohere's API interface.
|
||||
|
||||
Args:
|
||||
preamble (str, optional): When specified, the default Cohere preamble will be replaced with the provided one.
|
||||
chat_history (List[Dict[str, str]], optional): A list of previous messages between the user and the model.
|
||||
generation_id (str, optional): Unique identifier for the generated reply.
|
||||
response_id (str, optional): Unique identifier for the response.
|
||||
conversation_id (str, optional): An alternative to chat_history, creates or resumes a persisted conversation.
|
||||
prompt_truncation (str, optional): Dictates how the prompt will be constructed. Options: 'AUTO', 'AUTO_PRESERVE_ORDER', 'OFF'.
|
||||
connectors (List[Dict[str, str]], optional): List of connectors (e.g., web-search) to enrich the model's reply.
|
||||
search_queries_only (bool, optional): When true, the response will only contain a list of generated search queries.
|
||||
documents (List[Dict[str, str]], optional): A list of relevant documents that the model can cite.
|
||||
temperature (float, optional): A non-negative float that tunes the degree of randomness in generation.
|
||||
max_tokens (int, optional): The maximum number of tokens the model will generate as part of the response.
|
||||
k (int, optional): Ensures only the top k most likely tokens are considered for generation at each step.
|
||||
p (float, optional): Ensures that only the most likely tokens, with total probability mass of p, are considered for generation.
|
||||
frequency_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
|
||||
presence_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
|
||||
tools (List[Dict[str, str]], optional): A list of available tools (functions) that the model may suggest invoking.
|
||||
tool_results (List[Dict[str, Any]], optional): A list of results from invoking tools.
|
||||
seed (int, optional): A seed to assist reproducibility of the model's response.
|
||||
"""
|
||||
|
||||
preamble: Optional[str] = None
|
||||
chat_history: Optional[list] = None
|
||||
generation_id: Optional[str] = None
|
||||
response_id: Optional[str] = None
|
||||
conversation_id: Optional[str] = None
|
||||
prompt_truncation: Optional[str] = None
|
||||
connectors: Optional[list] = None
|
||||
search_queries_only: Optional[bool] = None
|
||||
documents: Optional[list] = None
|
||||
temperature: Optional[int] = None
|
||||
max_tokens: Optional[int] = None
|
||||
k: Optional[int] = None
|
||||
p: Optional[int] = None
|
||||
frequency_penalty: Optional[int] = None
|
||||
presence_penalty: Optional[int] = None
|
||||
tools: Optional[list] = None
|
||||
tool_results: Optional[list] = None
|
||||
seed: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
preamble: Optional[str] = None,
|
||||
chat_history: Optional[list] = None,
|
||||
generation_id: Optional[str] = None,
|
||||
response_id: Optional[str] = None,
|
||||
conversation_id: Optional[str] = None,
|
||||
prompt_truncation: Optional[str] = None,
|
||||
connectors: Optional[list] = None,
|
||||
search_queries_only: Optional[bool] = None,
|
||||
documents: Optional[list] = None,
|
||||
temperature: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
k: Optional[int] = None,
|
||||
p: Optional[int] = None,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
tools: Optional[list] = None,
|
||||
tool_results: Optional[list] = None,
|
||||
seed: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
return cohere_validate_environment(
|
||||
headers=headers,
|
||||
model=model,
|
||||
messages=messages,
|
||||
optional_params=optional_params,
|
||||
api_key=api_key,
|
||||
)
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return [
|
||||
"stream",
|
||||
"temperature",
|
||||
"max_tokens",
|
||||
"top_p",
|
||||
"frequency_penalty",
|
||||
"presence_penalty",
|
||||
"stop",
|
||||
"n",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"seed",
|
||||
"extra_headers",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for param, value in non_default_params.items():
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "n":
|
||||
optional_params["num_generations"] = value
|
||||
if param == "top_p":
|
||||
optional_params["p"] = value
|
||||
if param == "frequency_penalty":
|
||||
optional_params["frequency_penalty"] = value
|
||||
if param == "presence_penalty":
|
||||
optional_params["presence_penalty"] = value
|
||||
if param == "stop":
|
||||
optional_params["stop_sequences"] = value
|
||||
if param == "tools":
|
||||
optional_params["tools"] = value
|
||||
if param == "seed":
|
||||
optional_params["seed"] = value
|
||||
return optional_params
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
## Load Config
|
||||
for k, v in litellm.CohereChatConfig.get_config().items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
most_recent_message, chat_history = cohere_messages_pt_v2(
|
||||
messages=messages, model=model, llm_provider="cohere_chat"
|
||||
)
|
||||
|
||||
## Handle Tool Calling
|
||||
if "tools" in optional_params:
|
||||
_is_function_call = True
|
||||
cohere_tools = self._construct_cohere_tool(tools=optional_params["tools"])
|
||||
optional_params["tools"] = cohere_tools
|
||||
if isinstance(most_recent_message, dict):
|
||||
optional_params["tool_results"] = [most_recent_message]
|
||||
elif isinstance(most_recent_message, str):
|
||||
optional_params["message"] = most_recent_message
|
||||
|
||||
## check if chat history message is 'user' and 'tool_results' is given -> force_single_step=True, else cohere api fails
|
||||
if len(chat_history) > 0 and chat_history[-1]["role"] == "USER":
|
||||
optional_params["force_single_step"] = True
|
||||
|
||||
return optional_params
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
try:
|
||||
raw_response_json = raw_response.json()
|
||||
except Exception:
|
||||
raise CohereError(
|
||||
message=raw_response.text, status_code=raw_response.status_code
|
||||
)
|
||||
|
||||
try:
|
||||
cohere_v2_chat_response = CohereV2ChatResponse(**raw_response_json) # type: ignore
|
||||
except Exception:
|
||||
raise CohereError(message=raw_response.text, status_code=422)
|
||||
|
||||
cohere_content = cohere_v2_chat_response["message"].get("content", None)
|
||||
if cohere_content is not None:
|
||||
model_response.choices[0].message.content = "".join( # type: ignore
|
||||
[
|
||||
content.get("text", "")
|
||||
for content in cohere_content
|
||||
if content is not None
|
||||
]
|
||||
)
|
||||
|
||||
## ADD CITATIONS
|
||||
if "citations" in cohere_v2_chat_response:
|
||||
setattr(model_response, "citations", cohere_v2_chat_response["citations"])
|
||||
|
||||
## Tool calling response
|
||||
cohere_tools_response = cohere_v2_chat_response["message"].get("tool_calls", [])
|
||||
if cohere_tools_response is not None and cohere_tools_response != []:
|
||||
# convert cohere_tools_response to OpenAI response format
|
||||
tool_calls: List[ChatCompletionToolCallChunk] = []
|
||||
for index, tool in enumerate(cohere_tools_response):
|
||||
tool_call: ChatCompletionToolCallChunk = {
|
||||
**tool, # type: ignore
|
||||
"index": index,
|
||||
}
|
||||
tool_calls.append(tool_call)
|
||||
_message = litellm.Message(
|
||||
tool_calls=tool_calls,
|
||||
content=None,
|
||||
)
|
||||
model_response.choices[0].message = _message # type: ignore
|
||||
|
||||
## CALCULATING USAGE - use cohere `billed_units` for returning usage
|
||||
token_usage = cohere_v2_chat_response["usage"].get("tokens", {})
|
||||
prompt_tokens = token_usage.get("input_tokens", 0)
|
||||
completion_tokens = token_usage.get("output_tokens", 0)
|
||||
|
||||
model_response.created = int(time.time())
|
||||
model_response.model = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
setattr(model_response, "usage", usage)
|
||||
return model_response
|
||||
|
||||
def _construct_cohere_tool(
|
||||
self,
|
||||
tools: Optional[list] = None,
|
||||
):
|
||||
if tools is None:
|
||||
tools = []
|
||||
cohere_tools = []
|
||||
for tool in tools:
|
||||
cohere_tool = self._translate_openai_tool_to_cohere(tool)
|
||||
cohere_tools.append(cohere_tool)
|
||||
return cohere_tools
|
||||
|
||||
def _translate_openai_tool_to_cohere(
|
||||
self,
|
||||
openai_tool: dict,
|
||||
):
|
||||
# cohere tools look like this
|
||||
"""
|
||||
{
|
||||
"name": "query_daily_sales_report",
|
||||
"description": "Connects to a database to retrieve overall sales volumes and sales information for a given day.",
|
||||
"parameter_definitions": {
|
||||
"day": {
|
||||
"description": "Retrieves sales data for this day, formatted as YYYY-MM-DD.",
|
||||
"type": "str",
|
||||
"required": True
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
# OpenAI tools look like this
|
||||
"""
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA",
|
||||
},
|
||||
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
||||
},
|
||||
"required": ["location"],
|
||||
},
|
||||
},
|
||||
}
|
||||
"""
|
||||
cohere_tool = {
|
||||
"name": openai_tool["function"]["name"],
|
||||
"description": openai_tool["function"]["description"],
|
||||
"parameter_definitions": {},
|
||||
}
|
||||
|
||||
for param_name, param_def in openai_tool["function"]["parameters"][
|
||||
"properties"
|
||||
].items():
|
||||
required_params = (
|
||||
openai_tool.get("function", {})
|
||||
.get("parameters", {})
|
||||
.get("required", [])
|
||||
)
|
||||
cohere_param_def = {
|
||||
"description": param_def.get("description", ""),
|
||||
"type": param_def.get("type", ""),
|
||||
"required": param_name in required_params,
|
||||
}
|
||||
cohere_tool["parameter_definitions"][param_name] = cohere_param_def
|
||||
|
||||
return cohere_tool
|
||||
|
||||
def get_model_response_iterator(
|
||||
self,
|
||||
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
|
||||
sync_stream: bool,
|
||||
json_mode: Optional[bool] = False,
|
||||
):
|
||||
return CohereModelResponseIterator(
|
||||
streaming_response=streaming_response,
|
||||
sync_stream=sync_stream,
|
||||
json_mode=json_mode,
|
||||
)
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
return CohereError(status_code=status_code, message=error_message)
|
|
@ -104,19 +104,28 @@ class ModelResponseIterator:
|
|||
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
||||
|
||||
try:
|
||||
str_line = chunk
|
||||
if isinstance(chunk, bytes): # Handle binary data
|
||||
str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||
index = str_line.find("data:")
|
||||
if index != -1:
|
||||
str_line = str_line[index:]
|
||||
data_json = json.loads(str_line)
|
||||
return self.chunk_parser(chunk=data_json)
|
||||
return self.convert_str_chunk_to_generic_chunk(chunk=chunk)
|
||||
except StopIteration:
|
||||
raise StopIteration
|
||||
except ValueError as e:
|
||||
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
||||
|
||||
def convert_str_chunk_to_generic_chunk(self, chunk: str) -> GenericStreamingChunk:
|
||||
"""
|
||||
Convert a string chunk to a GenericStreamingChunk
|
||||
|
||||
Note: This is used for Cohere pass through streaming logging
|
||||
"""
|
||||
str_line = chunk
|
||||
if isinstance(chunk, bytes): # Handle binary data
|
||||
str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||
index = str_line.find("data:")
|
||||
if index != -1:
|
||||
str_line = str_line[index:]
|
||||
|
||||
data_json = json.loads(str_line)
|
||||
return self.chunk_parser(chunk=data_json)
|
||||
|
||||
# Async iterator
|
||||
def __aiter__(self):
|
||||
self.async_response_iterator = self.streaming_response.__aiter__()
|
||||
|
@ -131,15 +140,7 @@ class ModelResponseIterator:
|
|||
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
||||
|
||||
try:
|
||||
str_line = chunk
|
||||
if isinstance(chunk, bytes): # Handle binary data
|
||||
str_line = chunk.decode("utf-8") # Convert bytes to string
|
||||
index = str_line.find("data:")
|
||||
if index != -1:
|
||||
str_line = str_line[index:]
|
||||
|
||||
data_json = json.loads(str_line)
|
||||
return self.chunk_parser(chunk=data_json)
|
||||
return self.convert_str_chunk_to_generic_chunk(chunk=chunk)
|
||||
except StopAsyncIteration:
|
||||
raise StopAsyncIteration
|
||||
except ValueError as e:
|
||||
|
|
|
@ -0,0 +1,219 @@
|
|||
import json
|
||||
from datetime import datetime
|
||||
from typing import TYPE_CHECKING, Any, List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm._logging import verbose_proxy_logger
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.litellm_core_utils.litellm_logging import (
|
||||
get_standard_logging_object_payload,
|
||||
)
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig
|
||||
from litellm.proxy._types import PassThroughEndpointLoggingTypedDict
|
||||
from litellm.proxy.auth.auth_utils import get_end_user_id_from_request_body
|
||||
from litellm.proxy.pass_through_endpoints.types import PassthroughStandardLoggingPayload
|
||||
from litellm.types.utils import LlmProviders, ModelResponse, TextCompletionResponse
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..success_handler import PassThroughEndpointLogging
|
||||
from ..types import EndpointType
|
||||
else:
|
||||
PassThroughEndpointLogging = Any
|
||||
EndpointType = Any
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
|
||||
class BasePassthroughLoggingHandler(ABC):
|
||||
@property
|
||||
@abstractmethod
|
||||
def llm_provider_name(self) -> LlmProviders:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_provider_config(self, model: str) -> BaseConfig:
|
||||
pass
|
||||
|
||||
def passthrough_chat_handler(
|
||||
self,
|
||||
httpx_response: httpx.Response,
|
||||
response_body: dict,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
url_route: str,
|
||||
result: str,
|
||||
start_time: datetime,
|
||||
end_time: datetime,
|
||||
cache_hit: bool,
|
||||
request_body: dict,
|
||||
**kwargs,
|
||||
) -> PassThroughEndpointLoggingTypedDict:
|
||||
"""
|
||||
Transforms LLM response to OpenAI response, generates a standard logging object so downstream logging can be handled
|
||||
"""
|
||||
model = request_body.get("model", response_body.get("model", ""))
|
||||
provider_config = self.get_provider_config(model=model)
|
||||
litellm_model_response: ModelResponse = provider_config.transform_response(
|
||||
raw_response=httpx_response,
|
||||
model_response=litellm.ModelResponse(),
|
||||
model=model,
|
||||
messages=[],
|
||||
logging_obj=logging_obj,
|
||||
optional_params={},
|
||||
api_key="",
|
||||
request_data={},
|
||||
encoding=litellm.encoding,
|
||||
json_mode=False,
|
||||
litellm_params={},
|
||||
)
|
||||
|
||||
kwargs = self._create_response_logging_payload(
|
||||
litellm_model_response=litellm_model_response,
|
||||
model=model,
|
||||
kwargs=kwargs,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
logging_obj=logging_obj,
|
||||
)
|
||||
|
||||
return {
|
||||
"result": litellm_model_response,
|
||||
"kwargs": kwargs,
|
||||
}
|
||||
|
||||
def _get_user_from_metadata(
|
||||
self,
|
||||
passthrough_logging_payload: PassthroughStandardLoggingPayload,
|
||||
) -> Optional[str]:
|
||||
request_body = passthrough_logging_payload.get("request_body")
|
||||
if request_body:
|
||||
return get_end_user_id_from_request_body(request_body)
|
||||
return None
|
||||
|
||||
def _create_response_logging_payload(
|
||||
self,
|
||||
litellm_model_response: Union[ModelResponse, TextCompletionResponse],
|
||||
model: str,
|
||||
kwargs: dict,
|
||||
start_time: datetime,
|
||||
end_time: datetime,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
) -> dict:
|
||||
"""
|
||||
Create the standard logging object for Generic LLM passthrough
|
||||
|
||||
handles streaming and non-streaming responses
|
||||
"""
|
||||
|
||||
try:
|
||||
response_cost = litellm.completion_cost(
|
||||
completion_response=litellm_model_response,
|
||||
model=model,
|
||||
)
|
||||
|
||||
kwargs["response_cost"] = response_cost
|
||||
kwargs["model"] = model
|
||||
passthrough_logging_payload: Optional[PassthroughStandardLoggingPayload] = ( # type: ignore
|
||||
kwargs.get("passthrough_logging_payload")
|
||||
)
|
||||
if passthrough_logging_payload:
|
||||
user = self._get_user_from_metadata(
|
||||
passthrough_logging_payload=passthrough_logging_payload,
|
||||
)
|
||||
if user:
|
||||
kwargs.setdefault("litellm_params", {})
|
||||
kwargs["litellm_params"].update(
|
||||
{"proxy_server_request": {"body": {"user": user}}}
|
||||
)
|
||||
|
||||
# Make standard logging object for Anthropic
|
||||
standard_logging_object = get_standard_logging_object_payload(
|
||||
kwargs=kwargs,
|
||||
init_response_obj=litellm_model_response,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
logging_obj=logging_obj,
|
||||
status="success",
|
||||
)
|
||||
|
||||
# pretty print standard logging object
|
||||
verbose_proxy_logger.debug(
|
||||
"standard_logging_object= %s",
|
||||
json.dumps(standard_logging_object, indent=4),
|
||||
)
|
||||
kwargs["standard_logging_object"] = standard_logging_object
|
||||
|
||||
# set litellm_call_id to logging response object
|
||||
litellm_model_response.id = logging_obj.litellm_call_id
|
||||
litellm_model_response.model = model
|
||||
logging_obj.model_call_details["model"] = model
|
||||
return kwargs
|
||||
except Exception as e:
|
||||
verbose_proxy_logger.exception(
|
||||
"Error creating LLM passthrough response logging payload: %s", e
|
||||
)
|
||||
return kwargs
|
||||
|
||||
@abstractmethod
|
||||
def _build_complete_streaming_response(
|
||||
self,
|
||||
all_chunks: List[str],
|
||||
litellm_logging_obj: LiteLLMLoggingObj,
|
||||
model: str,
|
||||
) -> Optional[Union[ModelResponse, TextCompletionResponse]]:
|
||||
"""
|
||||
Builds complete response from raw chunks
|
||||
|
||||
- Converts str chunks to generic chunks
|
||||
- Converts generic chunks to litellm chunks (OpenAI format)
|
||||
- Builds complete response from litellm chunks
|
||||
"""
|
||||
pass
|
||||
|
||||
def _handle_logging_llm_collected_chunks(
|
||||
self,
|
||||
litellm_logging_obj: LiteLLMLoggingObj,
|
||||
passthrough_success_handler_obj: PassThroughEndpointLogging,
|
||||
url_route: str,
|
||||
request_body: dict,
|
||||
endpoint_type: EndpointType,
|
||||
start_time: datetime,
|
||||
all_chunks: List[str],
|
||||
end_time: datetime,
|
||||
) -> PassThroughEndpointLoggingTypedDict:
|
||||
"""
|
||||
Takes raw chunks from Anthropic passthrough endpoint and logs them in litellm callbacks
|
||||
|
||||
- Builds complete response from chunks
|
||||
- Creates standard logging object
|
||||
- Logs in litellm callbacks
|
||||
"""
|
||||
|
||||
model = request_body.get("model", "")
|
||||
complete_streaming_response = self._build_complete_streaming_response(
|
||||
all_chunks=all_chunks,
|
||||
litellm_logging_obj=litellm_logging_obj,
|
||||
model=model,
|
||||
)
|
||||
if complete_streaming_response is None:
|
||||
verbose_proxy_logger.error(
|
||||
"Unable to build complete streaming response for Anthropic passthrough endpoint, not logging..."
|
||||
)
|
||||
return {
|
||||
"result": None,
|
||||
"kwargs": {},
|
||||
}
|
||||
kwargs = self._create_response_logging_payload(
|
||||
litellm_model_response=complete_streaming_response,
|
||||
model=model,
|
||||
kwargs={},
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
logging_obj=litellm_logging_obj,
|
||||
)
|
||||
|
||||
return {
|
||||
"result": complete_streaming_response,
|
||||
"kwargs": kwargs,
|
||||
}
|
|
@ -0,0 +1,56 @@
|
|||
from typing import List, Optional, Union
|
||||
|
||||
from litellm import stream_chunk_builder
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||||
from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
|
||||
from litellm.llms.base_llm.chat.transformation import BaseConfig
|
||||
from litellm.llms.cohere.chat.v2_transformation import CohereV2ChatConfig
|
||||
from litellm.llms.cohere.common_utils import (
|
||||
ModelResponseIterator as CohereModelResponseIterator,
|
||||
)
|
||||
from litellm.types.utils import LlmProviders, ModelResponse, TextCompletionResponse
|
||||
|
||||
from .base_passthrough_logging_handler import BasePassthroughLoggingHandler
|
||||
|
||||
|
||||
class CoherePassthroughLoggingHandler(BasePassthroughLoggingHandler):
|
||||
@property
|
||||
def llm_provider_name(self) -> LlmProviders:
|
||||
return LlmProviders.COHERE
|
||||
|
||||
def get_provider_config(self, model: str) -> BaseConfig:
|
||||
return CohereV2ChatConfig()
|
||||
|
||||
def _build_complete_streaming_response(
|
||||
self,
|
||||
all_chunks: List[str],
|
||||
litellm_logging_obj: LiteLLMLoggingObj,
|
||||
model: str,
|
||||
) -> Optional[Union[ModelResponse, TextCompletionResponse]]:
|
||||
cohere_model_response_iterator = CohereModelResponseIterator(
|
||||
streaming_response=None,
|
||||
sync_stream=False,
|
||||
)
|
||||
litellm_custom_stream_wrapper = CustomStreamWrapper(
|
||||
completion_stream=cohere_model_response_iterator,
|
||||
model=model,
|
||||
logging_obj=litellm_logging_obj,
|
||||
custom_llm_provider="cohere",
|
||||
)
|
||||
all_openai_chunks = []
|
||||
for _chunk_str in all_chunks:
|
||||
try:
|
||||
generic_chunk = (
|
||||
cohere_model_response_iterator.convert_str_chunk_to_generic_chunk(
|
||||
chunk=_chunk_str
|
||||
)
|
||||
)
|
||||
litellm_chunk = litellm_custom_stream_wrapper.chunk_creator(
|
||||
chunk=generic_chunk
|
||||
)
|
||||
if litellm_chunk is not None:
|
||||
all_openai_chunks.append(litellm_chunk)
|
||||
except (StopIteration, StopAsyncIteration):
|
||||
break
|
||||
complete_streaming_response = stream_chunk_builder(chunks=all_openai_chunks)
|
||||
return complete_streaming_response
|
|
@ -683,6 +683,7 @@ async def pass_through_request( # noqa: PLR0915
|
|||
end_time=end_time,
|
||||
logging_obj=logging_obj,
|
||||
cache_hit=False,
|
||||
request_body=_parsed_body,
|
||||
**kwargs,
|
||||
)
|
||||
)
|
||||
|
|
|
@ -16,10 +16,15 @@ from .llm_provider_handlers.anthropic_passthrough_logging_handler import (
|
|||
from .llm_provider_handlers.assembly_passthrough_logging_handler import (
|
||||
AssemblyAIPassthroughLoggingHandler,
|
||||
)
|
||||
from .llm_provider_handlers.cohere_passthrough_logging_handler import (
|
||||
CoherePassthroughLoggingHandler,
|
||||
)
|
||||
from .llm_provider_handlers.vertex_passthrough_logging_handler import (
|
||||
VertexPassthroughLoggingHandler,
|
||||
)
|
||||
|
||||
cohere_passthrough_logging_handler = CoherePassthroughLoggingHandler()
|
||||
|
||||
|
||||
class PassThroughEndpointLogging:
|
||||
def __init__(self):
|
||||
|
@ -32,6 +37,8 @@ class PassThroughEndpointLogging:
|
|||
# Anthropic
|
||||
self.TRACKED_ANTHROPIC_ROUTES = ["/messages"]
|
||||
|
||||
# Cohere
|
||||
self.TRACKED_COHERE_ROUTES = ["/v2/chat"]
|
||||
self.assemblyai_passthrough_logging_handler = (
|
||||
AssemblyAIPassthroughLoggingHandler()
|
||||
)
|
||||
|
@ -84,6 +91,7 @@ class PassThroughEndpointLogging:
|
|||
start_time: datetime,
|
||||
end_time: datetime,
|
||||
cache_hit: bool,
|
||||
request_body: dict,
|
||||
**kwargs,
|
||||
):
|
||||
standard_logging_response_object: Optional[
|
||||
|
@ -125,6 +133,25 @@ class PassThroughEndpointLogging:
|
|||
anthropic_passthrough_logging_handler_result["result"]
|
||||
)
|
||||
kwargs = anthropic_passthrough_logging_handler_result["kwargs"]
|
||||
elif self.is_cohere_route(url_route):
|
||||
cohere_passthrough_logging_handler_result = (
|
||||
cohere_passthrough_logging_handler.passthrough_chat_handler(
|
||||
httpx_response=httpx_response,
|
||||
response_body=response_body or {},
|
||||
logging_obj=logging_obj,
|
||||
url_route=url_route,
|
||||
result=result,
|
||||
start_time=start_time,
|
||||
end_time=end_time,
|
||||
cache_hit=cache_hit,
|
||||
request_body=request_body,
|
||||
**kwargs,
|
||||
)
|
||||
)
|
||||
standard_logging_response_object = (
|
||||
cohere_passthrough_logging_handler_result["result"]
|
||||
)
|
||||
kwargs = cohere_passthrough_logging_handler_result["kwargs"]
|
||||
elif self.is_assemblyai_route(url_route):
|
||||
if (
|
||||
AssemblyAIPassthroughLoggingHandler._should_log_request(
|
||||
|
@ -173,6 +200,11 @@ class PassThroughEndpointLogging:
|
|||
return True
|
||||
return False
|
||||
|
||||
def is_cohere_route(self, url_route: str):
|
||||
for route in self.TRACKED_COHERE_ROUTES:
|
||||
if route in url_route:
|
||||
return True
|
||||
|
||||
def is_assemblyai_route(self, url_route: str):
|
||||
parsed_url = urlparse(url_route)
|
||||
if parsed_url.hostname == "api.assemblyai.com":
|
||||
|
|
|
@ -44,3 +44,59 @@ class ChatHistoryChatBot(TypedDict, total=False):
|
|||
ChatHistory = List[
|
||||
Union[ChatHistorySystem, ChatHistoryChatBot, ChatHistoryUser, ChatHistoryToolResult]
|
||||
]
|
||||
|
||||
|
||||
class CohereV2ChatResponseMessageToolCallFunction(TypedDict, total=False):
|
||||
name: str
|
||||
parameters: dict
|
||||
|
||||
|
||||
class CohereV2ChatResponseMessageToolCall(TypedDict):
|
||||
id: str
|
||||
type: Literal["function"]
|
||||
function: CohereV2ChatResponseMessageToolCallFunction
|
||||
|
||||
|
||||
class CohereV2ChatResponseMessageContent(TypedDict):
|
||||
id: str
|
||||
type: Literal["tool"]
|
||||
tool: str
|
||||
|
||||
|
||||
class CohereV2ChatResponseMessage(TypedDict, total=False):
|
||||
role: Required[Literal["assistant"]]
|
||||
tool_calls: List[CohereV2ChatResponseMessageToolCall]
|
||||
tool_plan: str
|
||||
content: List[CohereV2ChatResponseMessageContent]
|
||||
citations: List[dict]
|
||||
|
||||
|
||||
class CohereV2ChatResponseUsageBilledUnits(TypedDict, total=False):
|
||||
input_tokens: int
|
||||
output_tokens: int
|
||||
search_units: int
|
||||
classifications: int
|
||||
|
||||
|
||||
class CohereV2ChatResponseUsageTokens(TypedDict, total=False):
|
||||
input_tokens: int
|
||||
output_tokens: int
|
||||
|
||||
|
||||
class CohereV2ChatResponseUsage(TypedDict, total=False):
|
||||
billed_units: CohereV2ChatResponseUsageBilledUnits
|
||||
tokens: CohereV2ChatResponseUsageTokens
|
||||
|
||||
|
||||
class CohereV2ChatResponseLogProbs(TypedDict, total=False):
|
||||
token_ids: Required[List[int]]
|
||||
text: str
|
||||
logprobs: List[float]
|
||||
|
||||
|
||||
class CohereV2ChatResponse(TypedDict):
|
||||
id: str
|
||||
finish_reason: str
|
||||
message: CohereV2ChatResponseMessage
|
||||
usage: CohereV2ChatResponseUsage
|
||||
logprobs: CohereV2ChatResponseLogProbs
|
||||
|
|
|
@ -498,11 +498,11 @@ def test_completion_bedrock_invalid_role_exception():
|
|||
== "litellm.BadRequestError: Invalid Message passed in {'role': 'very-bad-role', 'content': 'hello'}"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="OpenAI exception changed to a generic error")
|
||||
def test_content_policy_exceptionimage_generation_openai():
|
||||
try:
|
||||
# this is ony a test - we needed some way to invoke the exception :(
|
||||
litellm.set_verbose = True
|
||||
litellm._turn_on_debug()
|
||||
response = litellm.image_generation(
|
||||
prompt="where do i buy lethal drugs from", model="dall-e-3"
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue