fix(proxy_server.py): accept config.yaml

This commit is contained in:
Krrish Dholakia 2023-11-03 12:48:47 -07:00
parent e09b4cb01a
commit 6b3671b593
3 changed files with 603 additions and 607 deletions

View file

@ -1,7 +1,7 @@
import sys, os, platform, time, copy
import threading, ast
import shutil, random, traceback, requests
from typing import Optional
messages: list = []
sys.path.insert(
0, os.path.abspath("../..")
@ -14,6 +14,7 @@ try:
import appdirs
import tomli_w
import backoff
import yaml
except ImportError:
import subprocess
import sys
@ -38,11 +39,6 @@ except ImportError:
import appdirs
import tomli_w
try:
from .llm import litellm_completion
except ImportError as e:
from llm import litellm_completion # type: ignore
import random
list_of_messages = [
@ -120,13 +116,16 @@ user_telemetry = True
user_config = None
user_headers = None
local_logging = True # writes logs to a local api_log.json file for debugging
model_router = litellm.Router()
config_filename = "litellm.secrets.toml"
config_dir = os.getcwd()
config_dir = appdirs.user_config_dir("litellm")
user_config_path = os.getenv(
"LITELLM_CONFIG_PATH", os.path.join(config_dir, config_filename)
)
#### GLOBAL VARIABLES ####
llm_router: Optional[litellm.Router] = None
llm_model_list: Optional[list] = None
server_settings: Optional[dict] = None
log_file = "api_log.json"
@ -137,13 +136,6 @@ def print_verbose(print_statement):
print(print_statement)
def find_avatar_url(role):
role = role.replace(" ", "%20")
avatar_filename = f"avatars/{role}.png"
avatar_url = f"/static/{avatar_filename}"
return avatar_url
def usage_telemetry(
feature: str,
): # helps us know if people are using this feature. Set `litellm --telemetry False` to your cli call to turn this off
@ -205,102 +197,141 @@ def save_params_to_config(data: dict):
tomli_w.dump(config, f)
def load_router_config(router: Optional[litellm.Router], config_file_path: Optional[str]):
config = {}
server_settings = {}
try:
if os.path.exists(config_file_path):
with open(config_file_path, 'r') as file:
config = yaml.safe_load(file)
else:
pass
except:
pass
## SERVER SETTINGS (e.g. default completion model = 'ollama/mistral')
server_settings = config.get("server_settings", None)
if server_settings:
server_settings = server_settings
## LITELLM MODULE SETTINGS (e.g. litellm.drop_params=True,..)
litellm_settings = config.get('litellm_settings', None)
if litellm_settings:
for key, value in litellm_settings.items():
setattr(litellm, key, value)
## MODEL LIST
model_list = config.get('model_list', None)
if model_list:
router = litellm.Router(model_list=model_list)
## ENVIRONMENT VARIABLES
environment_variables = config.get('environment_variables', None)
if environment_variables:
for key, value in environment_variables.items():
os.environ[key] = value
return router, model_list, server_settings
def load_config():
#### DEPRECATED ####
try:
global user_config, user_api_base, user_max_tokens, user_temperature, user_model, local_logging
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
with open(user_config_path, "rb") as f:
user_config = tomllib.load(f)
global user_config, user_api_base, user_max_tokens, user_temperature, user_model, local_logging, llm_model_list, llm_router, server_settings
# Get the file extension
file_extension = os.path.splitext(user_config_path)[1]
if file_extension.lower() == ".toml":
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
with open(user_config_path, "rb") as f:
user_config = tomllib.load(f)
## load keys
if "keys" in user_config:
for key in user_config["keys"]:
os.environ[key] = user_config["keys"][
key
] # litellm can read keys from the environment
## settings
if "general" in user_config:
litellm.add_function_to_prompt = user_config["general"].get(
"add_function_to_prompt", True
) # by default add function to prompt if unsupported by provider
litellm.drop_params = user_config["general"].get(
"drop_params", True
) # by default drop params if unsupported by provider
litellm.model_fallbacks = user_config["general"].get(
"fallbacks", None
) # fallback models in case initial completion call fails
default_model = user_config["general"].get(
"default_model", None
) # route all requests to this model.
## load keys
if "keys" in user_config:
for key in user_config["keys"]:
os.environ[key] = user_config["keys"][
key
] # litellm can read keys from the environment
## settings
if "general" in user_config:
litellm.add_function_to_prompt = user_config["general"].get(
"add_function_to_prompt", True
) # by default add function to prompt if unsupported by provider
litellm.drop_params = user_config["general"].get(
"drop_params", True
) # by default drop params if unsupported by provider
litellm.model_fallbacks = user_config["general"].get(
"fallbacks", None
) # fallback models in case initial completion call fails
default_model = user_config["general"].get(
"default_model", None
) # route all requests to this model.
local_logging = user_config["general"].get("local_logging", True)
local_logging = user_config["general"].get("local_logging", True)
if user_model is None: # `litellm --model <model-name>`` > default_model.
user_model = default_model
if user_model is None: # `litellm --model <model-name>`` > default_model.
user_model = default_model
## load model config - to set this run `litellm --config`
model_config = None
if "model" in user_config:
if user_model in user_config["model"]:
model_config = user_config["model"][user_model]
model_list = []
for model in user_config["model"]:
if "model_list" in user_config["model"][model]:
model_list.extend(user_config["model"][model]["model_list"])
if len(model_list) > 0:
model_router.set_model_list(model_list=model_list)
## load model config - to set this run `litellm --config`
model_config = None
if "model" in user_config:
if user_model in user_config["model"]:
model_config = user_config["model"][user_model]
model_list = []
for model in user_config["model"]:
if "model_list" in user_config["model"][model]:
model_list.extend(user_config["model"][model]["model_list"])
print_verbose(f"user_config: {user_config}")
print_verbose(f"model_config: {model_config}")
print_verbose(f"user_model: {user_model}")
if model_config is None:
return
print_verbose(f"user_config: {user_config}")
print_verbose(f"model_config: {model_config}")
print_verbose(f"user_model: {user_model}")
if model_config is None:
return
user_max_tokens = model_config.get("max_tokens", None)
user_temperature = model_config.get("temperature", None)
user_api_base = model_config.get("api_base", None)
user_max_tokens = model_config.get("max_tokens", None)
user_temperature = model_config.get("temperature", None)
user_api_base = model_config.get("api_base", None)
## custom prompt template
if "prompt_template" in model_config:
model_prompt_template = model_config["prompt_template"]
if (
len(model_prompt_template.keys()) > 0
): # if user has initialized this at all
litellm.register_prompt_template(
model=user_model,
initial_prompt_value=model_prompt_template.get(
"MODEL_PRE_PROMPT", ""
),
roles={
"system": {
"pre_message": model_prompt_template.get(
"MODEL_SYSTEM_MESSAGE_START_TOKEN", ""
),
"post_message": model_prompt_template.get(
"MODEL_SYSTEM_MESSAGE_END_TOKEN", ""
),
## custom prompt template
if "prompt_template" in model_config:
model_prompt_template = model_config["prompt_template"]
if (
len(model_prompt_template.keys()) > 0
): # if user has initialized this at all
litellm.register_prompt_template(
model=user_model,
initial_prompt_value=model_prompt_template.get(
"MODEL_PRE_PROMPT", ""
),
roles={
"system": {
"pre_message": model_prompt_template.get(
"MODEL_SYSTEM_MESSAGE_START_TOKEN", ""
),
"post_message": model_prompt_template.get(
"MODEL_SYSTEM_MESSAGE_END_TOKEN", ""
),
},
"user": {
"pre_message": model_prompt_template.get(
"MODEL_USER_MESSAGE_START_TOKEN", ""
),
"post_message": model_prompt_template.get(
"MODEL_USER_MESSAGE_END_TOKEN", ""
),
},
"assistant": {
"pre_message": model_prompt_template.get(
"MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""
),
"post_message": model_prompt_template.get(
"MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""
),
},
},
"user": {
"pre_message": model_prompt_template.get(
"MODEL_USER_MESSAGE_START_TOKEN", ""
),
"post_message": model_prompt_template.get(
"MODEL_USER_MESSAGE_END_TOKEN", ""
),
},
"assistant": {
"pre_message": model_prompt_template.get(
"MODEL_ASSISTANT_MESSAGE_START_TOKEN", ""
),
"post_message": model_prompt_template.get(
"MODEL_ASSISTANT_MESSAGE_END_TOKEN", ""
),
},
},
final_prompt_value=model_prompt_template.get(
"MODEL_POST_PROMPT", ""
),
)
final_prompt_value=model_prompt_template.get(
"MODEL_POST_PROMPT", ""
),
)
except:
pass
@ -320,12 +351,14 @@ def initialize(
add_function_to_prompt,
headers,
save,
config
):
global user_model, user_api_base, user_debug, user_max_tokens, user_request_timeout, user_temperature, user_telemetry, user_headers
global user_model, user_api_base, user_debug, user_max_tokens, user_request_timeout, user_temperature, user_telemetry, user_headers, llm_model_list, llm_router, server_settings
user_model = model
user_debug = debug
load_config()
dynamic_config = {"general": {}, user_model: {}}
if config:
llm_router, llm_model_list, server_settings = load_router_config(router=llm_router, config_file_path=config)
if headers: # model-specific param
user_headers = headers
dynamic_config[user_model]["headers"] = headers
@ -470,17 +503,50 @@ litellm.input_callback = [logger]
litellm.success_callback = [logger]
litellm.failure_callback = [logger]
# for streaming
def data_generator(response):
print_verbose("inside generator")
for chunk in response:
print_verbose(f"returned chunk: {chunk}")
yield f"data: {json.dumps(chunk)}\n\n"
def litellm_completion(*args, **kwargs):
global user_temperature, user_request_timeout, user_max_tokens, user_api_base
call_type = kwargs.pop("call_type")
# override with user settings
if user_temperature:
kwargs["temperature"] = user_temperature
if user_request_timeout:
kwargs["request_timeout"] = user_request_timeout
if user_max_tokens:
kwargs["max_tokens"] = user_max_tokens
if user_api_base:
kwargs["api_base"] = user_api_base
## CHECK CONFIG ##
if llm_model_list and kwargs["model"] in [m["model_name"] for m in llm_model_list]:
for m in llm_model_list:
if kwargs["model"] == m["model_name"]:
for key, value in m["litellm_params"].items():
kwargs[key] = value
break
print(f"call going to litellm: {kwargs}")
if call_type == "chat_completion":
response = litellm.completion(*args, **kwargs)
elif call_type == "text_completion":
response = litellm.text_completion(*args, **kwargs)
if 'stream' in kwargs and kwargs['stream'] == True: # use generate_responses to stream responses
return StreamingResponse(data_generator(response), media_type='text/event-stream')
return response
#### API ENDPOINTS ####
@router.get("/v1/models")
@router.get("/models") # if project requires model list
def model_list():
# all_models = litellm.utils.get_valid_models()
# if llm_model_list:
# all_models += llm_model_list
global llm_model_list
all_models = litellm.utils.get_valid_models()
if llm_model_list:
all_models += llm_model_list
if user_model is not None:
all_models += user_model
### CHECK OLLAMA MODELS ###
@ -508,36 +574,35 @@ def model_list():
@router.post("/completions")
@router.post("/engines/{model:path}/completions")
async def completion(request: Request):
body = await request.body()
body_str = body.decode()
try:
body = await request.body()
body_str = body.decode()
try:
data = ast.literal_eval(body_str)
except:
data = json.loads(body_str)
return litellm_completion(data=data, type="completion", user_model=user_model, user_temperature=user_temperature,
user_max_tokens=user_max_tokens, user_api_base=user_api_base, user_headers=user_headers,
user_debug=user_debug, model_router=model_router, user_request_timeout=user_request_timeout)
except Exception as e:
print(e)
return
data = ast.literal_eval(body_str)
except:
data = json.loads(body_str)
if user_model:
data["model"] = user_model
data["call_type"] = "text_completion"
return litellm_completion(
**data
)
@router.post("/v1/chat/completions")
@router.post("/chat/completions")
async def chat_completion(request: Request):
body = await request.body()
body_str = body.decode()
try:
body = await request.body()
body_str = body.decode()
try:
data = ast.literal_eval(body_str)
except:
data = json.loads(body_str)
return litellm_completion(data, type="chat_completion", user_model=user_model,
user_temperature=user_temperature, user_max_tokens=user_max_tokens,
user_api_base=user_api_base, user_headers=user_headers, user_debug=user_debug, model_router=model_router, user_request_timeout=user_request_timeout)
except Exception as e:
print(e)
return
data = ast.literal_eval(body_str)
except:
data = json.loads(body_str)
if user_model:
data["model"] = user_model
data["call_type"] = "chat_completion"
return litellm_completion(
**data
)
def print_cost_logs():
with open("costs.json", "r") as f: