fix: fix nlp cloud streaming

This commit is contained in:
Krrish Dholakia 2023-11-25 13:45:15 -08:00
parent a688df79b1
commit 6d9f7b8f9d
3 changed files with 97 additions and 14 deletions

View file

@ -131,14 +131,14 @@ def completion(
logging_obj.pre_call(
input=text,
api_key=api_key,
additional_args={"complete_input_dict": data},
additional_args={"complete_input_dict": data, "headers": headers, "api_base": completion_url},
)
## COMPLETION CALL
response = requests.post(
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
)
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
return clean_and_iterate_chunks(response)
else:
## LOGGING
logging_obj.post_call(
@ -179,6 +179,34 @@ def completion(
model_response.usage = usage
return model_response
# def clean_and_iterate_chunks(response):
# def process_chunk(chunk):
# print(f"received chunk: {chunk}")
# cleaned_chunk = chunk.decode("utf-8")
# # Perform further processing based on your needs
# return cleaned_chunk
# for line in response.iter_lines():
# if line:
# yield process_chunk(line)
def clean_and_iterate_chunks(response):
buffer = b''
for chunk in response.iter_content(chunk_size=1024):
if not chunk:
break
buffer += chunk
while b'\x00' in buffer:
buffer = buffer.replace(b'\x00', b'')
yield buffer.decode('utf-8')
buffer = b''
# No more data expected, yield any remaining data in the buffer
if buffer:
yield buffer.decode('utf-8')
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass

View file

@ -318,7 +318,36 @@ def test_completion_deep_infra_stream():
print(f"completion_response: {complete_response}")
except Exception as e:
pytest.fail(f"Error occurred: {e}")
test_completion_deep_infra_stream()
# test_completion_deep_infra_stream()
def test_completion_nlp_cloud_stream():
try:
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "how does a court case get to the Supreme Court?",
},
]
print("testing nlp cloud streaming")
response = completion(
model="nlp_cloud/finetuned-llama-2-70b", messages=messages, stream=True, max_tokens=20
)
complete_response = ""
# Add any assertions here to check the response
for idx, chunk in enumerate(response):
chunk, finished = streaming_format_tests(idx, chunk)
complete_response += chunk
if finished:
break
if complete_response.strip() == "":
raise Exception("Empty response received")
print(f"completion_response: {complete_response}")
except Exception as e:
print(f"Error occurred: {e}")
pytest.fail(f"Error occurred: {e}")
test_completion_nlp_cloud_stream()
def test_completion_claude_stream_bad_key():
try:
@ -652,7 +681,7 @@ def hf_test_completion_tgi_stream():
print(f"completion_response: {complete_response}")
except Exception as e:
pytest.fail(f"Error occurred: {e}")
hf_test_completion_tgi_stream()
# hf_test_completion_tgi_stream()
# def test_completion_aleph_alpha():
# try:

View file

@ -4642,6 +4642,7 @@ class CustomStreamWrapper:
self.sent_last_chunk = False
self.special_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"]
self.holding_chunk = ""
self.complete_response = ""
if self.logging_obj:
# Log the type of the received item
self.logging_obj.post_call(str(type(completion_stream)))
@ -4652,6 +4653,23 @@ class CustomStreamWrapper:
def __aiter__(self):
return self
def process_chunk(self, chunk: str):
"""
NLP Cloud streaming returns the entire response, for each chunk. Process this, to only return the delta.
"""
try:
chunk = chunk.strip()
self.complete_response = self.complete_response.strip()
if chunk.startswith(self.complete_response):
# Remove last_sent_chunk only if it appears at the start of the new chunk
chunk = chunk[len(self.complete_response):]
self.complete_response += chunk
return chunk
except Exception as e:
raise e
def logging(self, text):
if self.logging_obj:
self.logging_obj.post_call(text)
@ -4774,14 +4792,22 @@ class CustomStreamWrapper:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_nlp_cloud_chunk(self, chunk):
chunk = chunk.decode("utf-8")
data_json = json.loads(chunk)
text = ""
is_finished = False
finish_reason = ""
try:
text = data_json["generated_text"]
is_finished = True
finish_reason = "stop"
if "dolphin" in self.model:
chunk = self.process_chunk(chunk=chunk)
else:
data_json = json.loads(chunk)
chunk = data_json["generated_text"]
text = chunk
if "[DONE]" in text:
text = text.replace("[DONE]", "")
is_finished = True
finish_reason = "stop"
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
except:
except Exception as e:
raise ValueError(f"Unable to parse response. Original response: {chunk}")
def handle_aleph_alpha_chunk(self, chunk):
@ -5025,9 +5051,8 @@ class CustomStreamWrapper:
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
model_response.choices[0].finish_reason = response_obj["finish_reason"]
elif self.model in litellm.nlp_cloud_models or self.custom_llm_provider == "nlp_cloud":
elif self.custom_llm_provider == "nlp_cloud":
try:
response_obj = self.handle_nlp_cloud_chunk(chunk)
completion_obj["content"] = response_obj["text"]
if response_obj["is_finished"]:
@ -5119,9 +5144,9 @@ class CustomStreamWrapper:
model_response.model = self.model
print_verbose(f"model_response: {model_response}; completion_obj: {completion_obj}")
print_verbose(f"model_response finish reason 3: {model_response.choices[0].finish_reason}")
if len(completion_obj["content"]) > 0: # cannot set content of an OpenAI Object to be an empty string
hold, model_response_str = self.check_special_tokens(chunk=completion_obj["content"], finish_reason=model_response.choices[0].finish_reason)
print_verbose(f"hold - {hold}, model_response_str - {model_response_str}")
if hold is False:
completion_obj["content"] = model_response_str
if self.sent_first_chunk == False:
@ -5130,6 +5155,7 @@ class CustomStreamWrapper:
model_response.choices[0].delta = Delta(**completion_obj)
# LOGGING
threading.Thread(target=self.logging_obj.success_handler, args=(model_response,)).start()
print_verbose(f"model_response: {model_response}")
return model_response
else:
return
@ -5174,7 +5200,7 @@ class CustomStreamWrapper:
chunk = next(self.completion_stream)
print_verbose(f"chunk in __next__: {chunk}")
if chunk is not None:
if chunk is not None and chunk != b'':
response = self.chunk_creator(chunk=chunk)
print_verbose(f"response in __next__: {response}")
if response is not None: