mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 10:14:26 +00:00
fix: fix nlp cloud streaming
This commit is contained in:
parent
a688df79b1
commit
6d9f7b8f9d
3 changed files with 97 additions and 14 deletions
|
@ -131,14 +131,14 @@ def completion(
|
|||
logging_obj.pre_call(
|
||||
input=text,
|
||||
api_key=api_key,
|
||||
additional_args={"complete_input_dict": data},
|
||||
additional_args={"complete_input_dict": data, "headers": headers, "api_base": completion_url},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(
|
||||
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
|
||||
)
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
return clean_and_iterate_chunks(response)
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
|
@ -179,6 +179,34 @@ def completion(
|
|||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
|
||||
# def clean_and_iterate_chunks(response):
|
||||
# def process_chunk(chunk):
|
||||
# print(f"received chunk: {chunk}")
|
||||
# cleaned_chunk = chunk.decode("utf-8")
|
||||
# # Perform further processing based on your needs
|
||||
# return cleaned_chunk
|
||||
|
||||
# for line in response.iter_lines():
|
||||
# if line:
|
||||
# yield process_chunk(line)
|
||||
def clean_and_iterate_chunks(response):
|
||||
buffer = b''
|
||||
|
||||
for chunk in response.iter_content(chunk_size=1024):
|
||||
if not chunk:
|
||||
break
|
||||
|
||||
buffer += chunk
|
||||
while b'\x00' in buffer:
|
||||
buffer = buffer.replace(b'\x00', b'')
|
||||
yield buffer.decode('utf-8')
|
||||
buffer = b''
|
||||
|
||||
# No more data expected, yield any remaining data in the buffer
|
||||
if buffer:
|
||||
yield buffer.decode('utf-8')
|
||||
|
||||
def embedding():
|
||||
# logic for parsing in - calling - parsing out model embedding calls
|
||||
pass
|
||||
|
|
|
@ -318,7 +318,36 @@ def test_completion_deep_infra_stream():
|
|||
print(f"completion_response: {complete_response}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
test_completion_deep_infra_stream()
|
||||
# test_completion_deep_infra_stream()
|
||||
|
||||
def test_completion_nlp_cloud_stream():
|
||||
try:
|
||||
messages = [
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "how does a court case get to the Supreme Court?",
|
||||
},
|
||||
]
|
||||
print("testing nlp cloud streaming")
|
||||
response = completion(
|
||||
model="nlp_cloud/finetuned-llama-2-70b", messages=messages, stream=True, max_tokens=20
|
||||
)
|
||||
|
||||
complete_response = ""
|
||||
# Add any assertions here to check the response
|
||||
for idx, chunk in enumerate(response):
|
||||
chunk, finished = streaming_format_tests(idx, chunk)
|
||||
complete_response += chunk
|
||||
if finished:
|
||||
break
|
||||
if complete_response.strip() == "":
|
||||
raise Exception("Empty response received")
|
||||
print(f"completion_response: {complete_response}")
|
||||
except Exception as e:
|
||||
print(f"Error occurred: {e}")
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
test_completion_nlp_cloud_stream()
|
||||
|
||||
def test_completion_claude_stream_bad_key():
|
||||
try:
|
||||
|
@ -652,7 +681,7 @@ def hf_test_completion_tgi_stream():
|
|||
print(f"completion_response: {complete_response}")
|
||||
except Exception as e:
|
||||
pytest.fail(f"Error occurred: {e}")
|
||||
hf_test_completion_tgi_stream()
|
||||
# hf_test_completion_tgi_stream()
|
||||
|
||||
# def test_completion_aleph_alpha():
|
||||
# try:
|
||||
|
|
|
@ -4642,6 +4642,7 @@ class CustomStreamWrapper:
|
|||
self.sent_last_chunk = False
|
||||
self.special_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"]
|
||||
self.holding_chunk = ""
|
||||
self.complete_response = ""
|
||||
if self.logging_obj:
|
||||
# Log the type of the received item
|
||||
self.logging_obj.post_call(str(type(completion_stream)))
|
||||
|
@ -4652,6 +4653,23 @@ class CustomStreamWrapper:
|
|||
def __aiter__(self):
|
||||
return self
|
||||
|
||||
def process_chunk(self, chunk: str):
|
||||
"""
|
||||
NLP Cloud streaming returns the entire response, for each chunk. Process this, to only return the delta.
|
||||
"""
|
||||
try:
|
||||
chunk = chunk.strip()
|
||||
self.complete_response = self.complete_response.strip()
|
||||
|
||||
if chunk.startswith(self.complete_response):
|
||||
# Remove last_sent_chunk only if it appears at the start of the new chunk
|
||||
chunk = chunk[len(self.complete_response):]
|
||||
|
||||
self.complete_response += chunk
|
||||
return chunk
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
def logging(self, text):
|
||||
if self.logging_obj:
|
||||
self.logging_obj.post_call(text)
|
||||
|
@ -4774,14 +4792,22 @@ class CustomStreamWrapper:
|
|||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_nlp_cloud_chunk(self, chunk):
|
||||
chunk = chunk.decode("utf-8")
|
||||
data_json = json.loads(chunk)
|
||||
text = ""
|
||||
is_finished = False
|
||||
finish_reason = ""
|
||||
try:
|
||||
text = data_json["generated_text"]
|
||||
is_finished = True
|
||||
finish_reason = "stop"
|
||||
if "dolphin" in self.model:
|
||||
chunk = self.process_chunk(chunk=chunk)
|
||||
else:
|
||||
data_json = json.loads(chunk)
|
||||
chunk = data_json["generated_text"]
|
||||
text = chunk
|
||||
if "[DONE]" in text:
|
||||
text = text.replace("[DONE]", "")
|
||||
is_finished = True
|
||||
finish_reason = "stop"
|
||||
return {"text": text, "is_finished": is_finished, "finish_reason": finish_reason}
|
||||
except:
|
||||
except Exception as e:
|
||||
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
||||
|
||||
def handle_aleph_alpha_chunk(self, chunk):
|
||||
|
@ -5025,9 +5051,8 @@ class CustomStreamWrapper:
|
|||
completion_obj["content"] = response_obj["text"]
|
||||
if response_obj["is_finished"]:
|
||||
model_response.choices[0].finish_reason = response_obj["finish_reason"]
|
||||
elif self.model in litellm.nlp_cloud_models or self.custom_llm_provider == "nlp_cloud":
|
||||
elif self.custom_llm_provider == "nlp_cloud":
|
||||
try:
|
||||
|
||||
response_obj = self.handle_nlp_cloud_chunk(chunk)
|
||||
completion_obj["content"] = response_obj["text"]
|
||||
if response_obj["is_finished"]:
|
||||
|
@ -5119,9 +5144,9 @@ class CustomStreamWrapper:
|
|||
model_response.model = self.model
|
||||
print_verbose(f"model_response: {model_response}; completion_obj: {completion_obj}")
|
||||
print_verbose(f"model_response finish reason 3: {model_response.choices[0].finish_reason}")
|
||||
|
||||
if len(completion_obj["content"]) > 0: # cannot set content of an OpenAI Object to be an empty string
|
||||
hold, model_response_str = self.check_special_tokens(chunk=completion_obj["content"], finish_reason=model_response.choices[0].finish_reason)
|
||||
print_verbose(f"hold - {hold}, model_response_str - {model_response_str}")
|
||||
if hold is False:
|
||||
completion_obj["content"] = model_response_str
|
||||
if self.sent_first_chunk == False:
|
||||
|
@ -5130,6 +5155,7 @@ class CustomStreamWrapper:
|
|||
model_response.choices[0].delta = Delta(**completion_obj)
|
||||
# LOGGING
|
||||
threading.Thread(target=self.logging_obj.success_handler, args=(model_response,)).start()
|
||||
print_verbose(f"model_response: {model_response}")
|
||||
return model_response
|
||||
else:
|
||||
return
|
||||
|
@ -5174,7 +5200,7 @@ class CustomStreamWrapper:
|
|||
chunk = next(self.completion_stream)
|
||||
|
||||
print_verbose(f"chunk in __next__: {chunk}")
|
||||
if chunk is not None:
|
||||
if chunk is not None and chunk != b'':
|
||||
response = self.chunk_creator(chunk=chunk)
|
||||
print_verbose(f"response in __next__: {response}")
|
||||
if response is not None:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue