QA: ensure all bedrock regional models have same supported_ as base + Anthropic nested pydantic object support (#7844)

* build: ensure all regional bedrock models have same supported values as base bedrock model

prevents drift

* test(base_llm_unit_tests.py): add testing for nested pydantic objects

* fix(test_utils.py): add test_get_potential_model_names

* fix(anthropic/chat/transformation.py): support nested pydantic objects

Fixes https://github.com/BerriAI/litellm/issues/7755
This commit is contained in:
Krish Dholakia 2025-01-17 19:49:12 -08:00 committed by GitHub
parent 37ed49fe72
commit 6eb2346fd6
12 changed files with 259 additions and 62 deletions

View file

@ -1,5 +1,8 @@
from abc import ABC, abstractmethod
from typing import List, Optional
from typing import List, Optional, Type, Union
from openai.lib import _parsing, _pydantic
from pydantic import BaseModel
from litellm.types.utils import ModelInfoBase
@ -26,3 +29,39 @@ class BaseLLMModelInfo(ABC):
@abstractmethod
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
pass
def type_to_response_format_param(
response_format: Optional[Union[Type[BaseModel], dict]],
ref_template: Optional[str] = None,
) -> Optional[dict]:
"""
Re-implementation of openai's 'type_to_response_format_param' function
Used for converting pydantic object to api schema.
"""
if response_format is None:
return None
if isinstance(response_format, dict):
return response_format
# type checkers don't narrow the negation of a `TypeGuard` as it isn't
# a safe default behaviour but we know that at this point the `response_format`
# can only be a `type`
if not _parsing._completions.is_basemodel_type(response_format):
raise TypeError(f"Unsupported response_format type - {response_format}")
if ref_template is not None:
schema = response_format.model_json_schema(ref_template=ref_template)
else:
schema = _pydantic.to_strict_json_schema(response_format)
return {
"type": "json_schema",
"json_schema": {
"schema": schema,
"name": response_format.__name__,
"strict": True,
},
}

View file

@ -4,13 +4,25 @@ Common base config for all LLM providers
import types
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Iterator,
List,
Optional,
Type,
Union,
)
import httpx
from pydantic import BaseModel
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ModelResponse
from ..base_utils import type_to_response_format_param
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
@ -71,6 +83,11 @@ class BaseConfig(ABC):
and v is not None
}
def get_json_schema_from_pydantic_object(
self, response_format: Optional[Union[Type[BaseModel], dict]]
) -> Optional[dict]:
return type_to_response_format_param(response_format=response_format)
def should_fake_stream(
self,
model: Optional[str],