mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
QA: ensure all bedrock regional models have same supported_
as base + Anthropic nested pydantic object support (#7844)
* build: ensure all regional bedrock models have same supported values as base bedrock model prevents drift * test(base_llm_unit_tests.py): add testing for nested pydantic objects * fix(test_utils.py): add test_get_potential_model_names * fix(anthropic/chat/transformation.py): support nested pydantic objects Fixes https://github.com/BerriAI/litellm/issues/7755
This commit is contained in:
parent
37ed49fe72
commit
6eb2346fd6
12 changed files with 259 additions and 62 deletions
|
@ -1,5 +1,8 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from typing import List, Optional
|
||||
from typing import List, Optional, Type, Union
|
||||
|
||||
from openai.lib import _parsing, _pydantic
|
||||
from pydantic import BaseModel
|
||||
|
||||
from litellm.types.utils import ModelInfoBase
|
||||
|
||||
|
@ -26,3 +29,39 @@ class BaseLLMModelInfo(ABC):
|
|||
@abstractmethod
|
||||
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
|
||||
pass
|
||||
|
||||
|
||||
def type_to_response_format_param(
|
||||
response_format: Optional[Union[Type[BaseModel], dict]],
|
||||
ref_template: Optional[str] = None,
|
||||
) -> Optional[dict]:
|
||||
"""
|
||||
Re-implementation of openai's 'type_to_response_format_param' function
|
||||
|
||||
Used for converting pydantic object to api schema.
|
||||
"""
|
||||
if response_format is None:
|
||||
return None
|
||||
|
||||
if isinstance(response_format, dict):
|
||||
return response_format
|
||||
|
||||
# type checkers don't narrow the negation of a `TypeGuard` as it isn't
|
||||
# a safe default behaviour but we know that at this point the `response_format`
|
||||
# can only be a `type`
|
||||
if not _parsing._completions.is_basemodel_type(response_format):
|
||||
raise TypeError(f"Unsupported response_format type - {response_format}")
|
||||
|
||||
if ref_template is not None:
|
||||
schema = response_format.model_json_schema(ref_template=ref_template)
|
||||
else:
|
||||
schema = _pydantic.to_strict_json_schema(response_format)
|
||||
|
||||
return {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"schema": schema,
|
||||
"name": response_format.__name__,
|
||||
"strict": True,
|
||||
},
|
||||
}
|
||||
|
|
|
@ -4,13 +4,25 @@ Common base config for all LLM providers
|
|||
|
||||
import types
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Iterator,
|
||||
List,
|
||||
Optional,
|
||||
Type,
|
||||
Union,
|
||||
)
|
||||
|
||||
import httpx
|
||||
from pydantic import BaseModel
|
||||
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
from ..base_utils import type_to_response_format_param
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
|
||||
|
||||
|
@ -71,6 +83,11 @@ class BaseConfig(ABC):
|
|||
and v is not None
|
||||
}
|
||||
|
||||
def get_json_schema_from_pydantic_object(
|
||||
self, response_format: Optional[Union[Type[BaseModel], dict]]
|
||||
) -> Optional[dict]:
|
||||
return type_to_response_format_param(response_format=response_format)
|
||||
|
||||
def should_fake_stream(
|
||||
self,
|
||||
model: Optional[str],
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue