working sagemaker support

This commit is contained in:
ishaan-jaff 2023-09-04 11:30:34 -07:00
parent 022c632ce4
commit 746001e32a
4 changed files with 42 additions and 11 deletions

View file

@ -265,6 +265,7 @@ provider_list = [
"ai21",
"baseten",
"azure",
"sagemaker",
]
models_by_provider = {

View file

@ -5,6 +5,7 @@ import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
import sys
class SagemakerError(Exception):
def __init__(self, status_code, message):
@ -14,18 +15,32 @@ class SagemakerError(Exception):
self.message
) # Call the base class constructor with the parameters it needs
"""
SAGEMAKER AUTH Keys/Vars
os.environ['AWS_ACCESS_KEY_ID'] = ""
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
"""
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
import sys
if 'boto3' not in sys.modules:
import boto3
client = boto3.client(
"sagemaker-runtime",
region_name="us-west-2"
)
model = model
prompt = ""
@ -42,7 +57,7 @@ def completion(
else:
prompt += f"{message['content']}"
data = {
"prompt": prompt,
"inputs": prompt,
# "instruction": prompt, # some baseten models require the prompt to be passed in via the 'instruction' kwarg
**optional_params,
}
@ -50,26 +65,30 @@ def completion(
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=api_key,
api_key="",
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = requests.post(
"https://api.ai21.com/studio/v1/" + model + "/complete", headers=headers, data=json.dumps(data)
response = client.invoke_endpoint(
EndpointName=model,
ContentType="application/json",
Body=json.dumps(data),
CustomAttributes="accept_eula=true",
)
response = response["Body"].read().decode("utf8")
if "stream" in optional_params and optional_params["stream"] == True:
return response.iter_lines()
else:
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
api_key="",
original_response=response,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
print_verbose(f"raw model_response: {response}")
## RESPONSE OBJECT
completion_response = response.json()
completion_response = json.loads(response)
if "error" in completion_response:
raise SagemakerError(
message=completion_response["error"],
@ -77,7 +96,7 @@ def completion(
)
else:
try:
model_response["choices"][0]["message"]["content"] = completion_response["completions"][0]["data"]["text"]
model_response["choices"][0]["message"]["content"] = completion_response[0]["generation"]
except:
raise SagemakerError(message=json.dumps(completion_response), status_code=response.status_code)

View file

@ -692,7 +692,6 @@ def completion(
litellm_params=litellm_params,
logger_fn=logger_fn,
encoding=encoding,
api_key=ai21_key,
logging_obj=logging
)

View file

@ -114,6 +114,7 @@ def test_completion_claude_stream():
pytest.fail(f"Error occurred: {e}")
# def test_completion_hf_api():
# try:
# user_message = "write some code to find the sum of two numbers"
@ -391,6 +392,17 @@ def test_completion_together_ai():
pytest.fail(f"Error occurred: {e}")
# def test_completion_sagemaker():
# try:
# response = completion(
# model="sagemaker/jumpstart-dft-meta-textgeneration-llama-2-7b",
# messages=messages
# )
# # Add any assertions here to check the response
# print(response)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# def test_vertex_ai():
# model_name = "chat-bison"
# try: