version '0.1.341' returns usage across providers

This commit is contained in:
Krrish Dholakia 2023-08-05 12:20:09 -07:00
parent 580918f360
commit 7575d7ea47
9 changed files with 89 additions and 54 deletions

View file

@ -1,14 +1,13 @@
import os, openai, cohere, replicate, sys
from typing import Any
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
import traceback
from functools import partial
import dotenv
import traceback
import dotenv, traceback, random, asyncio, time
from copy import deepcopy
import litellm
from litellm import client, logging, exception_type, timeout, get_optional_params
import random
import asyncio
import tiktoken
encoding = tiktoken.get_encoding("cl100k_base")
from tenacity import (
retry,
stop_after_attempt,
@ -17,6 +16,17 @@ from tenacity import (
####### ENVIRONMENT VARIABLES ###################
dotenv.load_dotenv() # Loading env variables using dotenv
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"role": "assistant"
}
}
]
}
# TODO move this to utils.py
# TODO add translations
# TODO see if this worked - model_name == krrish
@ -44,6 +54,8 @@ def completion(
*, return_async=False, api_key=None, force_timeout=60, azure=False, logger_fn=None, verbose=False
):
try:
global new_response
model_response = deepcopy(new_response) # deep copy the default response format so we can mutate it and it's thread-safe.
# check if user passed in any of the OpenAI optional params
optional_params = get_optional_params(
functions=functions, function_call=function_call,
@ -128,6 +140,15 @@ def completion(
model=model,
prompt = prompt
)
completion_response = response["choices"]["text"]
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = response["created"]
model_response["model"] = model
model_response["usage"] = response["usage"]
response = model_response
elif "replicate" in model:
# replicate defaults to os.environ.get("REPLICATE_API_TOKEN")
# checking in case user set it to REPLICATE_API_KEY instead
@ -153,19 +174,21 @@ def completion(
response = ""
for item in output:
response += item
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": response,
"role": "assistant"
}
}
]
}
response = new_response
completion_response = response
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(encoding.encode(completion_response))
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
response = model_response
elif model in litellm.anthropic_models:
#anthropic defaults to os.environ.get("ANTHROPIC_API_KEY")
if api_key:
@ -183,7 +206,6 @@ def completion(
prompt += f"{HUMAN_PROMPT}{message['content']}"
prompt += f"{AI_PROMPT}"
anthropic = Anthropic()
# check if user passed in max_tokens != float('inf')
if max_tokens != float('inf'):
max_tokens_to_sample = max_tokens
else:
@ -196,20 +218,22 @@ def completion(
prompt=prompt,
max_tokens_to_sample=max_tokens_to_sample
)
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": completion.completion,
"role": "assistant"
}
}
]
}
print_verbose(f"new response: {new_response}")
response = new_response
completion_response = completion.completion
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
prompt_tokens = anthropic.count_tokens(prompt)
completion_tokens = anthropic.count_tokens(completion_response)
## RESPONSE OBJECT
print(f"model_response: {model_response}")
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
response = model_response
elif model in litellm.cohere_models:
if api_key:
cohere_key = api_key
@ -226,19 +250,21 @@ def completion(
model=model,
prompt = prompt
)
new_response = {
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": response[0].text,
"role": "assistant"
}
}
],
}
response = new_response
completion_response = response[0].text
## LOGGING
logging(model=model, input=prompt, azure=azure, additional_args={"max_tokens": max_tokens, "original_response": completion_response}, logger_fn=logger_fn)
prompt_tokens = len(encoding.encode(prompt))
completion_tokens = len(encoding.encode(completion_response))
## RESPONSE OBJECT
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens
}
response = model_response
else:
## LOGGING
logging(model=model, input=messages, azure=azure, logger_fn=logger_fn)