mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
fix(vertex_ai/gemini/transformation.py): handle 'http://' in gemini p… (#7660)
* fix(vertex_ai/gemini/transformation.py): handle 'http://' in gemini process url * refactor(router.py): refactor '_prompt_management_factory' to use logging obj get_chat_completion logic deduplicates code * fix(litellm_logging.py): update 'get_chat_completion_prompt' to update logging object messages * docs(prompt_management.md): update prompt management to be in beta given feedback - this still needs to be revised (e.g. passing in user message, not ignoring) * refactor(prompt_management_base.py): introduce base class for prompt management allows consistent behaviour across prompt management integrations * feat(prompt_management_base.py): support adding client message to template message + refactor langfuse prompt management to use prompt management base * fix(litellm_logging.py): log prompt id + prompt variables to langfuse if set allows tracking what prompt was used for what purpose * feat(litellm_logging.py): log prompt management metadata in standard logging payload + use in langfuse allows logging prompt id / prompt variables to langfuse * test: fix test * fix(router.py): cleanup unused imports * fix: fix linting error * fix: fix trace param typing * fix: fix linting errors * fix: fix code qa check
This commit is contained in:
parent
afdcbe3d64
commit
75c3ddfc9e
15 changed files with 340 additions and 76 deletions
|
@ -2,7 +2,13 @@ import Image from '@theme/IdealImage';
|
||||||
import Tabs from '@theme/Tabs';
|
import Tabs from '@theme/Tabs';
|
||||||
import TabItem from '@theme/TabItem';
|
import TabItem from '@theme/TabItem';
|
||||||
|
|
||||||
# Prompt Management
|
# [BETA] Prompt Management
|
||||||
|
|
||||||
|
:::info
|
||||||
|
|
||||||
|
This feature is currently in beta, and might change unexpectedly. We expect this to be more stable by next month (February 2025).
|
||||||
|
|
||||||
|
:::
|
||||||
|
|
||||||
Run experiments or change the specific model (e.g. from gpt-4o to gpt4o-mini finetune) from your prompt management tool (e.g. Langfuse) instead of making changes in the application.
|
Run experiments or change the specific model (e.g. from gpt-4o to gpt4o-mini finetune) from your prompt management tool (e.g. Langfuse) instead of making changes in the application.
|
||||||
|
|
||||||
|
|
|
@ -179,6 +179,7 @@ class LangFuseLogger:
|
||||||
optional_params = copy.deepcopy(kwargs.get("optional_params", {}))
|
optional_params = copy.deepcopy(kwargs.get("optional_params", {}))
|
||||||
|
|
||||||
prompt = {"messages": kwargs.get("messages")}
|
prompt = {"messages": kwargs.get("messages")}
|
||||||
|
|
||||||
functions = optional_params.pop("functions", None)
|
functions = optional_params.pop("functions", None)
|
||||||
tools = optional_params.pop("tools", None)
|
tools = optional_params.pop("tools", None)
|
||||||
if functions is not None:
|
if functions is not None:
|
||||||
|
@ -462,15 +463,27 @@ class LangFuseLogger:
|
||||||
|
|
||||||
if standard_logging_object is None:
|
if standard_logging_object is None:
|
||||||
end_user_id = None
|
end_user_id = None
|
||||||
|
prompt_management_metadata: Optional[dict] = None
|
||||||
else:
|
else:
|
||||||
end_user_id = standard_logging_object["metadata"].get(
|
end_user_id = standard_logging_object["metadata"].get(
|
||||||
"user_api_key_end_user_id", None
|
"user_api_key_end_user_id", None
|
||||||
)
|
)
|
||||||
|
|
||||||
|
prompt_management_metadata = cast(
|
||||||
|
Optional[dict],
|
||||||
|
standard_logging_object["metadata"].get(
|
||||||
|
"prompt_management_metadata", None
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
# Clean Metadata before logging - never log raw metadata
|
# Clean Metadata before logging - never log raw metadata
|
||||||
# the raw metadata can contain circular references which leads to infinite recursion
|
# the raw metadata can contain circular references which leads to infinite recursion
|
||||||
# we clean out all extra litellm metadata params before logging
|
# we clean out all extra litellm metadata params before logging
|
||||||
clean_metadata = {}
|
clean_metadata: Dict[str, Any] = {}
|
||||||
|
if prompt_management_metadata is not None:
|
||||||
|
clean_metadata["prompt_management_metadata"] = (
|
||||||
|
prompt_management_metadata
|
||||||
|
)
|
||||||
if isinstance(metadata, dict):
|
if isinstance(metadata, dict):
|
||||||
for key, value in metadata.items():
|
for key, value in metadata.items():
|
||||||
# generate langfuse tags - Default Tags sent to Langfuse from LiteLLM Proxy
|
# generate langfuse tags - Default Tags sent to Langfuse from LiteLLM Proxy
|
||||||
|
@ -498,10 +511,10 @@ class LangFuseLogger:
|
||||||
)
|
)
|
||||||
|
|
||||||
session_id = clean_metadata.pop("session_id", None)
|
session_id = clean_metadata.pop("session_id", None)
|
||||||
trace_name = clean_metadata.pop("trace_name", None)
|
trace_name = cast(Optional[str], clean_metadata.pop("trace_name", None))
|
||||||
trace_id = clean_metadata.pop("trace_id", litellm_call_id)
|
trace_id = clean_metadata.pop("trace_id", litellm_call_id)
|
||||||
existing_trace_id = clean_metadata.pop("existing_trace_id", None)
|
existing_trace_id = clean_metadata.pop("existing_trace_id", None)
|
||||||
update_trace_keys = clean_metadata.pop("update_trace_keys", [])
|
update_trace_keys = cast(list, clean_metadata.pop("update_trace_keys", []))
|
||||||
debug = clean_metadata.pop("debug_langfuse", None)
|
debug = clean_metadata.pop("debug_langfuse", None)
|
||||||
mask_input = clean_metadata.pop("mask_input", False)
|
mask_input = clean_metadata.pop("mask_input", False)
|
||||||
mask_output = clean_metadata.pop("mask_output", False)
|
mask_output = clean_metadata.pop("mask_output", False)
|
||||||
|
@ -514,7 +527,7 @@ class LangFuseLogger:
|
||||||
trace_name = f"litellm-{kwargs.get('call_type', 'completion')}"
|
trace_name = f"litellm-{kwargs.get('call_type', 'completion')}"
|
||||||
|
|
||||||
if existing_trace_id is not None:
|
if existing_trace_id is not None:
|
||||||
trace_params = {"id": existing_trace_id}
|
trace_params: Dict[str, Any] = {"id": existing_trace_id}
|
||||||
|
|
||||||
# Update the following keys for this trace
|
# Update the following keys for this trace
|
||||||
for metadata_param_key in update_trace_keys:
|
for metadata_param_key in update_trace_keys:
|
||||||
|
@ -656,8 +669,12 @@ class LangFuseLogger:
|
||||||
# if `generation_name` is None, use sensible default values
|
# if `generation_name` is None, use sensible default values
|
||||||
# If using litellm proxy user `key_alias` if not None
|
# If using litellm proxy user `key_alias` if not None
|
||||||
# If `key_alias` is None, just log `litellm-{call_type}` as the generation name
|
# If `key_alias` is None, just log `litellm-{call_type}` as the generation name
|
||||||
_user_api_key_alias = clean_metadata.get("user_api_key_alias", None)
|
_user_api_key_alias = cast(
|
||||||
generation_name = f"litellm-{kwargs.get('call_type', 'completion')}"
|
Optional[str], clean_metadata.get("user_api_key_alias", None)
|
||||||
|
)
|
||||||
|
generation_name = (
|
||||||
|
f"litellm-{cast(str, kwargs.get('call_type', 'completion'))}"
|
||||||
|
)
|
||||||
if _user_api_key_alias is not None:
|
if _user_api_key_alias is not None:
|
||||||
generation_name = f"litellm:{_user_api_key_alias}"
|
generation_name = f"litellm:{_user_api_key_alias}"
|
||||||
|
|
||||||
|
|
|
@ -10,12 +10,14 @@ from packaging.version import Version
|
||||||
from typing_extensions import TypeAlias
|
from typing_extensions import TypeAlias
|
||||||
|
|
||||||
from litellm.integrations.custom_logger import CustomLogger
|
from litellm.integrations.custom_logger import CustomLogger
|
||||||
from litellm.types.llms.openai import AllMessageValues
|
from litellm.integrations.prompt_management_base import PromptManagementClient
|
||||||
|
from litellm.types.llms.openai import AllMessageValues, ChatCompletionSystemMessage
|
||||||
from litellm.types.utils import StandardCallbackDynamicParams, StandardLoggingPayload
|
from litellm.types.utils import StandardCallbackDynamicParams, StandardLoggingPayload
|
||||||
|
|
||||||
from ...litellm_core_utils.specialty_caches.dynamic_logging_cache import (
|
from ...litellm_core_utils.specialty_caches.dynamic_logging_cache import (
|
||||||
DynamicLoggingCache,
|
DynamicLoggingCache,
|
||||||
)
|
)
|
||||||
|
from ..prompt_management_base import PromptManagementBase
|
||||||
from .langfuse import LangFuseLogger
|
from .langfuse import LangFuseLogger
|
||||||
from .langfuse_handler import LangFuseHandler
|
from .langfuse_handler import LangFuseHandler
|
||||||
|
|
||||||
|
@ -97,7 +99,7 @@ def langfuse_client_init(
|
||||||
return client
|
return client
|
||||||
|
|
||||||
|
|
||||||
class LangfusePromptManagement(LangFuseLogger, CustomLogger):
|
class LangfusePromptManagement(LangFuseLogger, PromptManagementBase, CustomLogger):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
langfuse_public_key=None,
|
langfuse_public_key=None,
|
||||||
|
@ -112,6 +114,10 @@ class LangfusePromptManagement(LangFuseLogger, CustomLogger):
|
||||||
flush_interval=flush_interval,
|
flush_interval=flush_interval,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def integration_name(self):
|
||||||
|
return "langfuse"
|
||||||
|
|
||||||
def _get_prompt_from_id(
|
def _get_prompt_from_id(
|
||||||
self, langfuse_prompt_id: str, langfuse_client: LangfuseClass
|
self, langfuse_prompt_id: str, langfuse_client: LangfuseClass
|
||||||
) -> PROMPT_CLIENT:
|
) -> PROMPT_CLIENT:
|
||||||
|
@ -122,7 +128,7 @@ class LangfusePromptManagement(LangFuseLogger, CustomLogger):
|
||||||
langfuse_prompt_client: PROMPT_CLIENT,
|
langfuse_prompt_client: PROMPT_CLIENT,
|
||||||
langfuse_prompt_variables: Optional[dict],
|
langfuse_prompt_variables: Optional[dict],
|
||||||
call_type: Union[Literal["completion"], Literal["text_completion"]],
|
call_type: Union[Literal["completion"], Literal["text_completion"]],
|
||||||
) -> Optional[Union[str, list]]:
|
) -> List[AllMessageValues]:
|
||||||
compiled_prompt: Optional[Union[str, list]] = None
|
compiled_prompt: Optional[Union[str, list]] = None
|
||||||
|
|
||||||
if langfuse_prompt_variables is None:
|
if langfuse_prompt_variables is None:
|
||||||
|
@ -130,16 +136,14 @@ class LangfusePromptManagement(LangFuseLogger, CustomLogger):
|
||||||
|
|
||||||
compiled_prompt = langfuse_prompt_client.compile(**langfuse_prompt_variables)
|
compiled_prompt = langfuse_prompt_client.compile(**langfuse_prompt_variables)
|
||||||
|
|
||||||
return compiled_prompt
|
if isinstance(compiled_prompt, str):
|
||||||
|
compiled_prompt = [
|
||||||
def _get_model_from_prompt(
|
ChatCompletionSystemMessage(role="system", content=compiled_prompt)
|
||||||
self, langfuse_prompt_client: PROMPT_CLIENT, model: str
|
]
|
||||||
) -> str:
|
|
||||||
config = langfuse_prompt_client.config
|
|
||||||
if "model" in config:
|
|
||||||
return config["model"]
|
|
||||||
else:
|
else:
|
||||||
return model.replace("langfuse/", "")
|
compiled_prompt = cast(List[AllMessageValues], compiled_prompt)
|
||||||
|
|
||||||
|
return compiled_prompt
|
||||||
|
|
||||||
def _get_optional_params_from_langfuse(
|
def _get_optional_params_from_langfuse(
|
||||||
self, langfuse_prompt_client: PROMPT_CLIENT
|
self, langfuse_prompt_client: PROMPT_CLIENT
|
||||||
|
@ -173,23 +177,27 @@ class LangfusePromptManagement(LangFuseLogger, CustomLogger):
|
||||||
dynamic_callback_params,
|
dynamic_callback_params,
|
||||||
)
|
)
|
||||||
|
|
||||||
def get_chat_completion_prompt(
|
def should_run_prompt_management(
|
||||||
|
self,
|
||||||
|
prompt_id: str,
|
||||||
|
dynamic_callback_params: StandardCallbackDynamicParams,
|
||||||
|
) -> bool:
|
||||||
|
langfuse_client = langfuse_client_init(
|
||||||
|
langfuse_public_key=dynamic_callback_params.get("langfuse_public_key"),
|
||||||
|
langfuse_secret=dynamic_callback_params.get("langfuse_secret"),
|
||||||
|
langfuse_host=dynamic_callback_params.get("langfuse_host"),
|
||||||
|
)
|
||||||
|
langfuse_prompt_client = self._get_prompt_from_id(
|
||||||
|
langfuse_prompt_id=prompt_id, langfuse_client=langfuse_client
|
||||||
|
)
|
||||||
|
return langfuse_prompt_client is not None
|
||||||
|
|
||||||
|
def _compile_prompt_helper(
|
||||||
self,
|
self,
|
||||||
model: str,
|
|
||||||
messages: List[AllMessageValues],
|
|
||||||
non_default_params: dict,
|
|
||||||
prompt_id: str,
|
prompt_id: str,
|
||||||
prompt_variables: Optional[dict],
|
prompt_variables: Optional[dict],
|
||||||
dynamic_callback_params: StandardCallbackDynamicParams,
|
dynamic_callback_params: StandardCallbackDynamicParams,
|
||||||
) -> Tuple[
|
) -> PromptManagementClient:
|
||||||
str,
|
|
||||||
List[AllMessageValues],
|
|
||||||
dict,
|
|
||||||
]:
|
|
||||||
if prompt_id is None:
|
|
||||||
raise ValueError(
|
|
||||||
"Langfuse prompt id is required. Pass in as parameter 'langfuse_prompt_id'"
|
|
||||||
)
|
|
||||||
langfuse_client = langfuse_client_init(
|
langfuse_client = langfuse_client_init(
|
||||||
langfuse_public_key=dynamic_callback_params.get("langfuse_public_key"),
|
langfuse_public_key=dynamic_callback_params.get("langfuse_public_key"),
|
||||||
langfuse_secret=dynamic_callback_params.get("langfuse_secret"),
|
langfuse_secret=dynamic_callback_params.get("langfuse_secret"),
|
||||||
|
@ -206,25 +214,19 @@ class LangfusePromptManagement(LangFuseLogger, CustomLogger):
|
||||||
call_type="completion",
|
call_type="completion",
|
||||||
)
|
)
|
||||||
|
|
||||||
if compiled_prompt is None:
|
template_model = langfuse_prompt_client.config.get("model")
|
||||||
raise ValueError(f"Langfuse prompt not found. Prompt id={prompt_id}")
|
|
||||||
if isinstance(compiled_prompt, list):
|
|
||||||
messages = compiled_prompt
|
|
||||||
elif isinstance(compiled_prompt, str):
|
|
||||||
messages = [{"role": "user", "content": compiled_prompt}]
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
f"Langfuse prompt is not a list or string. Prompt id={prompt_id}, compiled_prompt type={type(compiled_prompt)}"
|
|
||||||
)
|
|
||||||
|
|
||||||
## SET MODEL
|
template_optional_params = self._get_optional_params_from_langfuse(
|
||||||
model = self._get_model_from_prompt(langfuse_prompt_client, model)
|
|
||||||
|
|
||||||
optional_params = self._get_optional_params_from_langfuse(
|
|
||||||
langfuse_prompt_client
|
langfuse_prompt_client
|
||||||
)
|
)
|
||||||
|
|
||||||
return model, messages, optional_params
|
return PromptManagementClient(
|
||||||
|
prompt_id=prompt_id,
|
||||||
|
prompt_template=compiled_prompt,
|
||||||
|
prompt_template_model=template_model,
|
||||||
|
prompt_template_optional_params=template_optional_params,
|
||||||
|
completed_messages=None,
|
||||||
|
)
|
||||||
|
|
||||||
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
||||||
standard_callback_dynamic_params = kwargs.get(
|
standard_callback_dynamic_params = kwargs.get(
|
||||||
|
|
118
litellm/integrations/prompt_management_base.py
Normal file
118
litellm/integrations/prompt_management_base.py
Normal file
|
@ -0,0 +1,118 @@
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from typing import Any, Dict, List, Optional, Tuple, TypedDict
|
||||||
|
|
||||||
|
from litellm.types.llms.openai import AllMessageValues
|
||||||
|
from litellm.types.utils import StandardCallbackDynamicParams
|
||||||
|
|
||||||
|
|
||||||
|
class PromptManagementClient(TypedDict):
|
||||||
|
prompt_id: str
|
||||||
|
prompt_template: List[AllMessageValues]
|
||||||
|
prompt_template_model: Optional[str]
|
||||||
|
prompt_template_optional_params: Optional[Dict[str, Any]]
|
||||||
|
completed_messages: Optional[List[AllMessageValues]]
|
||||||
|
|
||||||
|
|
||||||
|
class PromptManagementBase(ABC):
|
||||||
|
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def integration_name(self) -> str:
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def should_run_prompt_management(
|
||||||
|
self,
|
||||||
|
prompt_id: str,
|
||||||
|
dynamic_callback_params: StandardCallbackDynamicParams,
|
||||||
|
) -> bool:
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def _compile_prompt_helper(
|
||||||
|
self,
|
||||||
|
prompt_id: str,
|
||||||
|
prompt_variables: Optional[dict],
|
||||||
|
dynamic_callback_params: StandardCallbackDynamicParams,
|
||||||
|
) -> PromptManagementClient:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def merge_messages(
|
||||||
|
self,
|
||||||
|
prompt_template: List[AllMessageValues],
|
||||||
|
client_messages: List[AllMessageValues],
|
||||||
|
) -> List[AllMessageValues]:
|
||||||
|
return prompt_template + client_messages
|
||||||
|
|
||||||
|
def compile_prompt(
|
||||||
|
self,
|
||||||
|
prompt_id: str,
|
||||||
|
prompt_variables: Optional[dict],
|
||||||
|
client_messages: List[AllMessageValues],
|
||||||
|
dynamic_callback_params: StandardCallbackDynamicParams,
|
||||||
|
) -> PromptManagementClient:
|
||||||
|
compiled_prompt_client = self._compile_prompt_helper(
|
||||||
|
prompt_id=prompt_id,
|
||||||
|
prompt_variables=prompt_variables,
|
||||||
|
dynamic_callback_params=dynamic_callback_params,
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
messages = compiled_prompt_client["prompt_template"] + client_messages
|
||||||
|
except Exception as e:
|
||||||
|
raise ValueError(
|
||||||
|
f"Error compiling prompt: {e}. Prompt id={prompt_id}, prompt_variables={prompt_variables}, client_messages={client_messages}, dynamic_callback_params={dynamic_callback_params}"
|
||||||
|
)
|
||||||
|
|
||||||
|
compiled_prompt_client["completed_messages"] = messages
|
||||||
|
return compiled_prompt_client
|
||||||
|
|
||||||
|
def _get_model_from_prompt(
|
||||||
|
self, prompt_management_client: PromptManagementClient, model: str
|
||||||
|
) -> str:
|
||||||
|
if prompt_management_client["prompt_template_model"] is not None:
|
||||||
|
return prompt_management_client["prompt_template_model"]
|
||||||
|
else:
|
||||||
|
return model.replace("{}/".format(self.integration_name), "")
|
||||||
|
|
||||||
|
def get_chat_completion_prompt(
|
||||||
|
self,
|
||||||
|
model: str,
|
||||||
|
messages: List[AllMessageValues],
|
||||||
|
non_default_params: dict,
|
||||||
|
prompt_id: str,
|
||||||
|
prompt_variables: Optional[dict],
|
||||||
|
dynamic_callback_params: StandardCallbackDynamicParams,
|
||||||
|
) -> Tuple[
|
||||||
|
str,
|
||||||
|
List[AllMessageValues],
|
||||||
|
dict,
|
||||||
|
]:
|
||||||
|
if not self.should_run_prompt_management(
|
||||||
|
prompt_id=prompt_id, dynamic_callback_params=dynamic_callback_params
|
||||||
|
):
|
||||||
|
return model, messages, non_default_params
|
||||||
|
|
||||||
|
prompt_template = self.compile_prompt(
|
||||||
|
prompt_id=prompt_id,
|
||||||
|
prompt_variables=prompt_variables,
|
||||||
|
client_messages=messages,
|
||||||
|
dynamic_callback_params=dynamic_callback_params,
|
||||||
|
)
|
||||||
|
|
||||||
|
completed_messages = prompt_template["completed_messages"] or messages
|
||||||
|
|
||||||
|
prompt_template_optional_params = (
|
||||||
|
prompt_template["prompt_template_optional_params"] or {}
|
||||||
|
)
|
||||||
|
|
||||||
|
updated_non_default_params = {
|
||||||
|
**non_default_params,
|
||||||
|
**prompt_template_optional_params,
|
||||||
|
}
|
||||||
|
|
||||||
|
model = self._get_model_from_prompt(
|
||||||
|
prompt_management_client=prompt_template, model=model
|
||||||
|
)
|
||||||
|
|
||||||
|
return model, completed_messages, updated_non_default_params
|
|
@ -59,6 +59,7 @@ from litellm.types.utils import (
|
||||||
StandardLoggingPayload,
|
StandardLoggingPayload,
|
||||||
StandardLoggingPayloadErrorInformation,
|
StandardLoggingPayloadErrorInformation,
|
||||||
StandardLoggingPayloadStatus,
|
StandardLoggingPayloadStatus,
|
||||||
|
StandardLoggingPromptManagementMetadata,
|
||||||
TextCompletionResponse,
|
TextCompletionResponse,
|
||||||
TranscriptionResponse,
|
TranscriptionResponse,
|
||||||
Usage,
|
Usage,
|
||||||
|
@ -424,6 +425,7 @@ class Logging(LiteLLMLoggingBaseClass):
|
||||||
dynamic_callback_params=self.standard_callback_dynamic_params,
|
dynamic_callback_params=self.standard_callback_dynamic_params,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
self.messages = messages
|
||||||
|
|
||||||
return model, messages, non_default_params
|
return model, messages, non_default_params
|
||||||
|
|
||||||
|
@ -431,6 +433,7 @@ class Logging(LiteLLMLoggingBaseClass):
|
||||||
"""
|
"""
|
||||||
Common helper function across the sync + async pre-call function
|
Common helper function across the sync + async pre-call function
|
||||||
"""
|
"""
|
||||||
|
|
||||||
self.model_call_details["input"] = input
|
self.model_call_details["input"] = input
|
||||||
self.model_call_details["api_key"] = api_key
|
self.model_call_details["api_key"] = api_key
|
||||||
self.model_call_details["additional_args"] = additional_args
|
self.model_call_details["additional_args"] = additional_args
|
||||||
|
@ -2628,7 +2631,7 @@ class StandardLoggingPayloadSetup:
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_standard_logging_metadata(
|
def get_standard_logging_metadata(
|
||||||
metadata: Optional[Dict[str, Any]]
|
metadata: Optional[Dict[str, Any]], litellm_params: Optional[dict] = None
|
||||||
) -> StandardLoggingMetadata:
|
) -> StandardLoggingMetadata:
|
||||||
"""
|
"""
|
||||||
Clean and filter the metadata dictionary to include only the specified keys in StandardLoggingMetadata.
|
Clean and filter the metadata dictionary to include only the specified keys in StandardLoggingMetadata.
|
||||||
|
@ -2643,6 +2646,20 @@ class StandardLoggingPayloadSetup:
|
||||||
- If the input metadata is None or not a dictionary, an empty StandardLoggingMetadata object is returned.
|
- If the input metadata is None or not a dictionary, an empty StandardLoggingMetadata object is returned.
|
||||||
- If 'user_api_key' is present in metadata and is a valid SHA256 hash, it's stored as 'user_api_key_hash'.
|
- If 'user_api_key' is present in metadata and is a valid SHA256 hash, it's stored as 'user_api_key_hash'.
|
||||||
"""
|
"""
|
||||||
|
prompt_management_metadata: Optional[
|
||||||
|
StandardLoggingPromptManagementMetadata
|
||||||
|
] = None
|
||||||
|
if litellm_params is not None:
|
||||||
|
prompt_id = cast(Optional[str], litellm_params.get("prompt_id", None))
|
||||||
|
prompt_variables = cast(
|
||||||
|
Optional[dict], litellm_params.get("prompt_variables", None)
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt_management_metadata = StandardLoggingPromptManagementMetadata(
|
||||||
|
prompt_id=prompt_id,
|
||||||
|
prompt_variables=prompt_variables,
|
||||||
|
)
|
||||||
|
|
||||||
# Initialize with default values
|
# Initialize with default values
|
||||||
clean_metadata = StandardLoggingMetadata(
|
clean_metadata = StandardLoggingMetadata(
|
||||||
user_api_key_hash=None,
|
user_api_key_hash=None,
|
||||||
|
@ -2655,6 +2672,7 @@ class StandardLoggingPayloadSetup:
|
||||||
requester_ip_address=None,
|
requester_ip_address=None,
|
||||||
requester_metadata=None,
|
requester_metadata=None,
|
||||||
user_api_key_end_user_id=None,
|
user_api_key_end_user_id=None,
|
||||||
|
prompt_management_metadata=prompt_management_metadata,
|
||||||
)
|
)
|
||||||
if isinstance(metadata, dict):
|
if isinstance(metadata, dict):
|
||||||
# Filter the metadata dictionary to include only the specified keys
|
# Filter the metadata dictionary to include only the specified keys
|
||||||
|
@ -2949,7 +2967,7 @@ def get_standard_logging_object_payload(
|
||||||
)
|
)
|
||||||
# clean up litellm metadata
|
# clean up litellm metadata
|
||||||
clean_metadata = StandardLoggingPayloadSetup.get_standard_logging_metadata(
|
clean_metadata = StandardLoggingPayloadSetup.get_standard_logging_metadata(
|
||||||
metadata=metadata
|
metadata=metadata, litellm_params=litellm_params
|
||||||
)
|
)
|
||||||
|
|
||||||
saved_cache_cost: float = 0.0
|
saved_cache_cost: float = 0.0
|
||||||
|
@ -2966,6 +2984,7 @@ def get_standard_logging_object_payload(
|
||||||
## Get model cost information ##
|
## Get model cost information ##
|
||||||
base_model = _get_base_model_from_metadata(model_call_details=kwargs)
|
base_model = _get_base_model_from_metadata(model_call_details=kwargs)
|
||||||
custom_pricing = use_custom_pricing_for_model(litellm_params=litellm_params)
|
custom_pricing = use_custom_pricing_for_model(litellm_params=litellm_params)
|
||||||
|
|
||||||
model_cost_information = StandardLoggingPayloadSetup.get_model_cost_information(
|
model_cost_information = StandardLoggingPayloadSetup.get_model_cost_information(
|
||||||
base_model=base_model,
|
base_model=base_model,
|
||||||
custom_pricing=custom_pricing,
|
custom_pricing=custom_pricing,
|
||||||
|
@ -3072,6 +3091,7 @@ def get_standard_logging_metadata(
|
||||||
requester_ip_address=None,
|
requester_ip_address=None,
|
||||||
requester_metadata=None,
|
requester_metadata=None,
|
||||||
user_api_key_end_user_id=None,
|
user_api_key_end_user_id=None,
|
||||||
|
prompt_management_metadata=None,
|
||||||
)
|
)
|
||||||
if isinstance(metadata, dict):
|
if isinstance(metadata, dict):
|
||||||
# Filter the metadata dictionary to include only the specified keys
|
# Filter the metadata dictionary to include only the specified keys
|
||||||
|
|
|
@ -82,7 +82,7 @@ def _process_gemini_image(image_url: str) -> PartType:
|
||||||
):
|
):
|
||||||
file_data = FileDataType(file_uri=image_url, mime_type=image_type)
|
file_data = FileDataType(file_uri=image_url, mime_type=image_type)
|
||||||
return PartType(file_data=file_data)
|
return PartType(file_data=file_data)
|
||||||
elif "https://" in image_url or "base64" in image_url:
|
elif "http://" in image_url or "https://" in image_url or "base64" in image_url:
|
||||||
# https links for unsupported mime types and base64 images
|
# https links for unsupported mime types and base64 images
|
||||||
image = convert_to_anthropic_image_obj(image_url)
|
image = convert_to_anthropic_image_obj(image_url)
|
||||||
_blob = BlobType(data=image["data"], mime_type=image["media_type"])
|
_blob = BlobType(data=image["data"], mime_type=image["media_type"])
|
||||||
|
|
|
@ -1077,6 +1077,8 @@ def completion( # type: ignore # noqa: PLR0915
|
||||||
litellm_metadata=kwargs.get("litellm_metadata"),
|
litellm_metadata=kwargs.get("litellm_metadata"),
|
||||||
disable_add_transform_inline_image_block=disable_add_transform_inline_image_block,
|
disable_add_transform_inline_image_block=disable_add_transform_inline_image_block,
|
||||||
drop_params=kwargs.get("drop_params"),
|
drop_params=kwargs.get("drop_params"),
|
||||||
|
prompt_id=prompt_id,
|
||||||
|
prompt_variables=prompt_variables,
|
||||||
)
|
)
|
||||||
logging.update_environment_variables(
|
logging.update_environment_variables(
|
||||||
model=model,
|
model=model,
|
||||||
|
|
|
@ -10,9 +10,8 @@ model_list:
|
||||||
api_key: os.environ/OPENAI_API_KEY
|
api_key: os.environ/OPENAI_API_KEY
|
||||||
- model_name: chatbot_actions
|
- model_name: chatbot_actions
|
||||||
litellm_params:
|
litellm_params:
|
||||||
model: langfuse/azure/gpt-4o
|
model: langfuse/gpt-3.5-turbo
|
||||||
api_base: "os.environ/AZURE_API_BASE"
|
api_key: os.environ/OPENAI_API_KEY
|
||||||
api_key: "os.environ/AZURE_API_KEY"
|
|
||||||
tpm: 1000000
|
tpm: 1000000
|
||||||
prompt_id: "jokes"
|
prompt_id: "jokes"
|
||||||
- model_name: openai-deepseek
|
- model_name: openai-deepseek
|
||||||
|
|
|
@ -2565,7 +2565,6 @@ class ProxyConfig:
|
||||||
for response in responses:
|
for response in responses:
|
||||||
if response is not None:
|
if response is not None:
|
||||||
param_name = getattr(response, "param_name", None)
|
param_name = getattr(response, "param_name", None)
|
||||||
verbose_proxy_logger.info(f"loading {param_name} settings from db")
|
|
||||||
if param_name == "litellm_settings":
|
if param_name == "litellm_settings":
|
||||||
verbose_proxy_logger.info(
|
verbose_proxy_logger.info(
|
||||||
f"litellm_settings: {response.param_value}"
|
f"litellm_settings: {response.param_value}"
|
||||||
|
|
|
@ -47,9 +47,6 @@ from litellm.caching.caching import DualCache, InMemoryCache, RedisCache
|
||||||
from litellm.integrations.custom_logger import CustomLogger
|
from litellm.integrations.custom_logger import CustomLogger
|
||||||
from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs
|
from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs
|
||||||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
|
||||||
from litellm.litellm_core_utils.litellm_logging import (
|
|
||||||
_init_custom_logger_compatible_class,
|
|
||||||
)
|
|
||||||
from litellm.router_strategy.budget_limiter import RouterBudgetLimiting
|
from litellm.router_strategy.budget_limiter import RouterBudgetLimiting
|
||||||
from litellm.router_strategy.least_busy import LeastBusyLoggingHandler
|
from litellm.router_strategy.least_busy import LeastBusyLoggingHandler
|
||||||
from litellm.router_strategy.lowest_cost import LowestCostLoggingHandler
|
from litellm.router_strategy.lowest_cost import LowestCostLoggingHandler
|
||||||
|
@ -120,6 +117,8 @@ from litellm.utils import (
|
||||||
CustomStreamWrapper,
|
CustomStreamWrapper,
|
||||||
EmbeddingResponse,
|
EmbeddingResponse,
|
||||||
ModelResponse,
|
ModelResponse,
|
||||||
|
Rules,
|
||||||
|
function_setup,
|
||||||
get_llm_provider,
|
get_llm_provider,
|
||||||
get_non_default_completion_params,
|
get_non_default_completion_params,
|
||||||
get_secret,
|
get_secret,
|
||||||
|
@ -1457,6 +1456,17 @@ class Router:
|
||||||
messages: List[AllMessageValues],
|
messages: List[AllMessageValues],
|
||||||
kwargs: Dict[str, Any],
|
kwargs: Dict[str, Any],
|
||||||
):
|
):
|
||||||
|
litellm_logging_object = kwargs.get("litellm_logging_obj", None)
|
||||||
|
if litellm_logging_object is None:
|
||||||
|
litellm_logging_object, kwargs = function_setup(
|
||||||
|
**{
|
||||||
|
"original_function": "acompletion",
|
||||||
|
"rules_obj": Rules(),
|
||||||
|
"start_time": get_utc_datetime(),
|
||||||
|
**kwargs,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
litellm_logging_object = cast(LiteLLMLogging, litellm_logging_object)
|
||||||
prompt_management_deployment = self.get_available_deployment(
|
prompt_management_deployment = self.get_available_deployment(
|
||||||
model=model,
|
model=model,
|
||||||
messages=[{"role": "user", "content": "prompt"}],
|
messages=[{"role": "user", "content": "prompt"}],
|
||||||
|
@ -1475,38 +1485,31 @@ class Router:
|
||||||
"prompt_variables", None
|
"prompt_variables", None
|
||||||
)
|
)
|
||||||
|
|
||||||
if litellm_model is None or "/" not in litellm_model:
|
if prompt_id is None or not isinstance(prompt_id, str):
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Model is not a custom logger compatible callback. Got={litellm_model}"
|
f"Prompt ID is not set or not a string. Got={prompt_id}, type={type(prompt_id)}"
|
||||||
|
)
|
||||||
|
if prompt_variables is not None and not isinstance(prompt_variables, dict):
|
||||||
|
raise ValueError(
|
||||||
|
f"Prompt variables is set but not a dictionary. Got={prompt_variables}, type={type(prompt_variables)}"
|
||||||
)
|
)
|
||||||
|
|
||||||
custom_logger_compatible_callback = litellm_model.split("/", 1)[0]
|
|
||||||
split_litellm_model = litellm_model.split("/", 1)[1]
|
|
||||||
|
|
||||||
custom_logger = _init_custom_logger_compatible_class(
|
|
||||||
logging_integration=custom_logger_compatible_callback,
|
|
||||||
internal_usage_cache=None,
|
|
||||||
llm_router=None,
|
|
||||||
)
|
|
||||||
|
|
||||||
if custom_logger is None:
|
|
||||||
raise ValueError(
|
|
||||||
f"Custom logger is not initialized. Got={custom_logger_compatible_callback}"
|
|
||||||
)
|
|
||||||
model, messages, optional_params = (
|
model, messages, optional_params = (
|
||||||
await custom_logger.async_get_chat_completion_prompt(
|
litellm_logging_object.get_chat_completion_prompt(
|
||||||
model=split_litellm_model,
|
model=litellm_model,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
non_default_params=get_non_default_completion_params(kwargs=kwargs),
|
non_default_params=get_non_default_completion_params(kwargs=kwargs),
|
||||||
prompt_id=prompt_id,
|
prompt_id=prompt_id,
|
||||||
prompt_variables=prompt_variables,
|
prompt_variables=prompt_variables,
|
||||||
dynamic_callback_params={},
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
kwargs = {**kwargs, **optional_params}
|
kwargs = {**kwargs, **optional_params}
|
||||||
kwargs["model"] = model
|
kwargs["model"] = model
|
||||||
kwargs["messages"] = messages
|
kwargs["messages"] = messages
|
||||||
|
kwargs["litellm_logging_obj"] = litellm_logging_object
|
||||||
|
kwargs["prompt_id"] = prompt_id
|
||||||
|
kwargs["prompt_variables"] = prompt_variables
|
||||||
|
|
||||||
_model_list = self.get_model_list(model_name=model)
|
_model_list = self.get_model_list(model_name=model)
|
||||||
if _model_list is None or len(_model_list) == 0: # if direct call to model
|
if _model_list is None or len(_model_list) == 0: # if direct call to model
|
||||||
|
|
|
@ -1457,9 +1457,14 @@ class StandardLoggingUserAPIKeyMetadata(TypedDict):
|
||||||
user_api_key_end_user_id: Optional[str]
|
user_api_key_end_user_id: Optional[str]
|
||||||
|
|
||||||
|
|
||||||
|
class StandardLoggingPromptManagementMetadata(TypedDict):
|
||||||
|
prompt_id: Optional[str]
|
||||||
|
prompt_variables: Optional[dict]
|
||||||
|
|
||||||
|
|
||||||
class StandardLoggingMetadata(StandardLoggingUserAPIKeyMetadata):
|
class StandardLoggingMetadata(StandardLoggingUserAPIKeyMetadata):
|
||||||
"""
|
"""
|
||||||
Specific metadata k,v pairs logged to integration for easier cost tracking
|
Specific metadata k,v pairs logged to integration for easier cost tracking and prompt management
|
||||||
"""
|
"""
|
||||||
|
|
||||||
spend_logs_metadata: Optional[
|
spend_logs_metadata: Optional[
|
||||||
|
@ -1467,6 +1472,7 @@ class StandardLoggingMetadata(StandardLoggingUserAPIKeyMetadata):
|
||||||
] # special param to log k,v pairs to spendlogs for a call
|
] # special param to log k,v pairs to spendlogs for a call
|
||||||
requester_ip_address: Optional[str]
|
requester_ip_address: Optional[str]
|
||||||
requester_metadata: Optional[dict]
|
requester_metadata: Optional[dict]
|
||||||
|
prompt_management_metadata: Optional[StandardLoggingPromptManagementMetadata]
|
||||||
|
|
||||||
|
|
||||||
class StandardLoggingAdditionalHeaders(TypedDict, total=False):
|
class StandardLoggingAdditionalHeaders(TypedDict, total=False):
|
||||||
|
|
|
@ -2034,6 +2034,8 @@ def get_litellm_params(
|
||||||
litellm_metadata: Optional[dict] = None,
|
litellm_metadata: Optional[dict] = None,
|
||||||
disable_add_transform_inline_image_block: Optional[bool] = None,
|
disable_add_transform_inline_image_block: Optional[bool] = None,
|
||||||
drop_params: Optional[bool] = None,
|
drop_params: Optional[bool] = None,
|
||||||
|
prompt_id: Optional[str] = None,
|
||||||
|
prompt_variables: Optional[dict] = None,
|
||||||
):
|
):
|
||||||
litellm_params = {
|
litellm_params = {
|
||||||
"acompletion": acompletion,
|
"acompletion": acompletion,
|
||||||
|
@ -2068,6 +2070,8 @@ def get_litellm_params(
|
||||||
"litellm_metadata": litellm_metadata,
|
"litellm_metadata": litellm_metadata,
|
||||||
"disable_add_transform_inline_image_block": disable_add_transform_inline_image_block,
|
"disable_add_transform_inline_image_block": disable_add_transform_inline_image_block,
|
||||||
"drop_params": drop_params,
|
"drop_params": drop_params,
|
||||||
|
"prompt_id": prompt_id,
|
||||||
|
"prompt_variables": prompt_variables,
|
||||||
}
|
}
|
||||||
return litellm_params
|
return litellm_params
|
||||||
|
|
||||||
|
|
|
@ -5,6 +5,10 @@ import traceback
|
||||||
|
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
import litellm.litellm_core_utils
|
||||||
|
import litellm.litellm_core_utils.prompt_templates
|
||||||
|
import litellm.litellm_core_utils.prompt_templates.factory
|
||||||
|
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
import io
|
import io
|
||||||
from unittest.mock import AsyncMock, MagicMock, patch
|
from unittest.mock import AsyncMock, MagicMock, patch
|
||||||
|
@ -16,6 +20,8 @@ import pytest
|
||||||
import litellm
|
import litellm
|
||||||
from litellm import get_optional_params
|
from litellm import get_optional_params
|
||||||
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
||||||
|
from litellm.llms.vertex_ai.gemini.transformation import _process_gemini_image
|
||||||
|
from litellm.types.llms.vertex_ai import PartType, BlobType
|
||||||
import httpx
|
import httpx
|
||||||
|
|
||||||
|
|
||||||
|
@ -1240,3 +1246,53 @@ def test_vertex_embedding_url(model, expected_url):
|
||||||
|
|
||||||
assert url == expected_url
|
assert url == expected_url
|
||||||
assert endpoint == "predict"
|
assert endpoint == "predict"
|
||||||
|
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
from unittest.mock import Mock, patch
|
||||||
|
from typing import Dict, Any
|
||||||
|
|
||||||
|
# Import your actual module here
|
||||||
|
# from your_module import _process_gemini_image, PartType, FileDataType, BlobType
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def mock_convert_url_to_base64():
|
||||||
|
with patch(
|
||||||
|
"litellm.litellm_core_utils.prompt_templates.factory.convert_url_to_base64",
|
||||||
|
) as mock:
|
||||||
|
# Setup the mock to return a valid image object
|
||||||
|
mock.return_value = "..."
|
||||||
|
yield mock
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def mock_blob():
|
||||||
|
return Mock(spec=BlobType)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"http_url",
|
||||||
|
[
|
||||||
|
"http://img1.etsystatic.com/260/0/7813604/il_fullxfull.4226713999_q86e.jpg",
|
||||||
|
"http://example.com/image.jpg",
|
||||||
|
"http://subdomain.domain.com/path/to/image.png",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_process_gemini_image_http_url(
|
||||||
|
http_url: str, mock_convert_url_to_base64: Mock, mock_blob: Mock
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Test that _process_gemini_image correctly handles HTTP URLs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
http_url: Test HTTP URL
|
||||||
|
mock_convert_to_anthropic: Mocked convert_to_anthropic_image_obj function
|
||||||
|
mock_blob: Mocked BlobType instance
|
||||||
|
"""
|
||||||
|
# Arrange
|
||||||
|
expected_image_data = "..."
|
||||||
|
mock_convert_url_to_base64.return_value = expected_image_data
|
||||||
|
|
||||||
|
# Act
|
||||||
|
result = _process_gemini_image(http_url)
|
||||||
|
|
|
@ -500,6 +500,37 @@ def test_get_supported_openai_params() -> None:
|
||||||
assert get_supported_openai_params("nonexistent") is None
|
assert get_supported_openai_params("nonexistent") is None
|
||||||
|
|
||||||
|
|
||||||
|
def test_get_chat_completion_prompt():
|
||||||
|
"""
|
||||||
|
Unit test to ensure get_chat_completion_prompt updates messages in logging object.
|
||||||
|
"""
|
||||||
|
from litellm.litellm_core_utils.litellm_logging import Logging
|
||||||
|
|
||||||
|
litellm_logging_obj = Logging(
|
||||||
|
model="gpt-3.5-turbo",
|
||||||
|
messages=[{"role": "user", "content": "hi"}],
|
||||||
|
stream=False,
|
||||||
|
call_type="acompletion",
|
||||||
|
litellm_call_id="1234",
|
||||||
|
start_time=datetime.now(),
|
||||||
|
function_id="1234",
|
||||||
|
)
|
||||||
|
|
||||||
|
updated_message = "hello world"
|
||||||
|
|
||||||
|
litellm_logging_obj.get_chat_completion_prompt(
|
||||||
|
model="gpt-3.5-turbo",
|
||||||
|
messages=[{"role": "user", "content": updated_message}],
|
||||||
|
non_default_params={},
|
||||||
|
prompt_id="1234",
|
||||||
|
prompt_variables=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert litellm_logging_obj.messages == [
|
||||||
|
{"role": "user", "content": updated_message}
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
def test_redact_msgs_from_logs():
|
def test_redact_msgs_from_logs():
|
||||||
"""
|
"""
|
||||||
Tests that turn_off_message_logging does not modify the response_obj
|
Tests that turn_off_message_logging does not modify the response_obj
|
||||||
|
|
|
@ -259,6 +259,7 @@ def validate_redacted_message_span_attributes(span):
|
||||||
"gen_ai.response.id",
|
"gen_ai.response.id",
|
||||||
"gen_ai.response.model",
|
"gen_ai.response.model",
|
||||||
"llm.usage.total_tokens",
|
"llm.usage.total_tokens",
|
||||||
|
"metadata.prompt_management_metadata",
|
||||||
"gen_ai.usage.completion_tokens",
|
"gen_ai.usage.completion_tokens",
|
||||||
"gen_ai.usage.prompt_tokens",
|
"gen_ai.usage.prompt_tokens",
|
||||||
"metadata.user_api_key_hash",
|
"metadata.user_api_key_hash",
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue