mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
(feat) cohere_chat provider
This commit is contained in:
parent
042a71cdc7
commit
7635c764cf
2 changed files with 245 additions and 0 deletions
204
litellm/llms/cohere_chat.py
Normal file
204
litellm/llms/cohere_chat.py
Normal file
|
@ -0,0 +1,204 @@
|
|||
import os, types
|
||||
import json
|
||||
from enum import Enum
|
||||
import requests
|
||||
import time, traceback
|
||||
from typing import Callable, Optional
|
||||
from litellm.utils import ModelResponse, Choices, Message, Usage
|
||||
import litellm
|
||||
import httpx
|
||||
|
||||
|
||||
class CohereError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(method="POST", url="https://api.cohere.ai/v1/chat")
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class CohereChatConfig:
|
||||
"""
|
||||
Configuration class for Cohere's API interface.
|
||||
|
||||
Args:
|
||||
preamble (str, optional): When specified, the default Cohere preamble will be replaced with the provided one.
|
||||
chat_history (List[Dict[str, str]], optional): A list of previous messages between the user and the model.
|
||||
generation_id (str, optional): Unique identifier for the generated reply.
|
||||
response_id (str, optional): Unique identifier for the response.
|
||||
conversation_id (str, optional): An alternative to chat_history, creates or resumes a persisted conversation.
|
||||
prompt_truncation (str, optional): Dictates how the prompt will be constructed. Options: 'AUTO', 'AUTO_PRESERVE_ORDER', 'OFF'.
|
||||
connectors (List[Dict[str, str]], optional): List of connectors (e.g., web-search) to enrich the model's reply.
|
||||
search_queries_only (bool, optional): When true, the response will only contain a list of generated search queries.
|
||||
documents (List[Dict[str, str]], optional): A list of relevant documents that the model can cite.
|
||||
temperature (float, optional): A non-negative float that tunes the degree of randomness in generation.
|
||||
max_tokens (int, optional): The maximum number of tokens the model will generate as part of the response.
|
||||
k (int, optional): Ensures only the top k most likely tokens are considered for generation at each step.
|
||||
p (float, optional): Ensures that only the most likely tokens, with total probability mass of p, are considered for generation.
|
||||
frequency_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
|
||||
presence_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
|
||||
tools (List[Dict[str, str]], optional): A list of available tools (functions) that the model may suggest invoking.
|
||||
tool_results (List[Dict[str, Any]], optional): A list of results from invoking tools.
|
||||
"""
|
||||
|
||||
preamble: Optional[str] = None
|
||||
chat_history: Optional[list] = None
|
||||
generation_id: Optional[str] = None
|
||||
response_id: Optional[str] = None
|
||||
conversation_id: Optional[str] = None
|
||||
prompt_truncation: Optional[str] = None
|
||||
connectors: Optional[list] = None
|
||||
search_queries_only: Optional[bool] = None
|
||||
documents: Optional[list] = None
|
||||
temperature: Optional[int] = None
|
||||
max_tokens: Optional[int] = None
|
||||
k: Optional[int] = None
|
||||
p: Optional[int] = None
|
||||
frequency_penalty: Optional[int] = None
|
||||
presence_penalty: Optional[int] = None
|
||||
tools: Optional[list] = None
|
||||
tool_results: Optional[list] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
preamble: Optional[str] = None,
|
||||
chat_history: Optional[list] = None,
|
||||
generation_id: Optional[str] = None,
|
||||
response_id: Optional[str] = None,
|
||||
conversation_id: Optional[str] = None,
|
||||
prompt_truncation: Optional[str] = None,
|
||||
connectors: Optional[list] = None,
|
||||
search_queries_only: Optional[bool] = None,
|
||||
documents: Optional[list] = None,
|
||||
temperature: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
k: Optional[int] = None,
|
||||
p: Optional[int] = None,
|
||||
frequency_penalty: Optional[int] = None,
|
||||
presence_penalty: Optional[int] = None,
|
||||
tools: Optional[list] = None,
|
||||
tool_results: Optional[list] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
|
||||
def validate_environment(api_key):
|
||||
headers = {
|
||||
"accept": "application/json",
|
||||
"content-type": "application/json",
|
||||
}
|
||||
if api_key:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
return headers
|
||||
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
api_base: str,
|
||||
model_response: ModelResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
api_key,
|
||||
logging_obj,
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
headers = validate_environment(api_key)
|
||||
completion_url = api_base
|
||||
model = model
|
||||
prompt = " ".join(message["content"] for message in messages)
|
||||
|
||||
## Load Config
|
||||
config = litellm.CohereConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in optional_params
|
||||
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
optional_params[k] = v
|
||||
|
||||
data = {
|
||||
"model": model,
|
||||
"message": prompt,
|
||||
**optional_params,
|
||||
}
|
||||
|
||||
## LOGGING
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"headers": headers,
|
||||
"api_base": completion_url,
|
||||
},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
response = requests.post(
|
||||
completion_url,
|
||||
headers=headers,
|
||||
data=json.dumps(data),
|
||||
stream=optional_params["stream"] if "stream" in optional_params else False,
|
||||
)
|
||||
## error handling for cohere calls
|
||||
if response.status_code != 200:
|
||||
raise CohereError(message=response.text, status_code=response.status_code)
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
return response.iter_lines()
|
||||
else:
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key=api_key,
|
||||
original_response=response.text,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response.text}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = response.json()
|
||||
try:
|
||||
model_response.choices[0].message.content = completion_response["text"] # type: ignore
|
||||
except Exception as e:
|
||||
raise CohereError(message=response.text, status_code=response.status_code)
|
||||
|
||||
## CALCULATING USAGE - use cohere `billed_units` for returning usage
|
||||
billed_units = completion_response.get("meta", {}).get("billed_units", {})
|
||||
|
||||
prompt_tokens = billed_units.get("input_tokens", 0)
|
||||
completion_tokens = billed_units.get("output_tokens", 0)
|
||||
|
||||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
|
@ -54,6 +54,7 @@ from .llms import (
|
|||
ollama_chat,
|
||||
cloudflare,
|
||||
cohere,
|
||||
cohere_chat,
|
||||
petals,
|
||||
oobabooga,
|
||||
openrouter,
|
||||
|
@ -1218,6 +1219,46 @@ def completion(
|
|||
)
|
||||
return response
|
||||
response = model_response
|
||||
elif custom_llm_provider == "cohere_chat":
|
||||
cohere_key = (
|
||||
api_key
|
||||
or litellm.cohere_key
|
||||
or get_secret("COHERE_API_KEY")
|
||||
or get_secret("CO_API_KEY")
|
||||
or litellm.api_key
|
||||
)
|
||||
|
||||
api_base = (
|
||||
api_base
|
||||
or litellm.api_base
|
||||
or get_secret("COHERE_API_BASE")
|
||||
or "https://api.cohere.ai/v1/chat"
|
||||
)
|
||||
|
||||
model_response = cohere_chat.completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
api_base=api_base,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=optional_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
api_key=cohere_key,
|
||||
logging_obj=logging, # model call logging done inside the class as we make need to modify I/O to fit aleph alpha's requirements
|
||||
)
|
||||
|
||||
if "stream" in optional_params and optional_params["stream"] == True:
|
||||
# don't try to access stream object,
|
||||
response = CustomStreamWrapper(
|
||||
model_response,
|
||||
model,
|
||||
custom_llm_provider="cohere_chat",
|
||||
logging_obj=logging,
|
||||
)
|
||||
return response
|
||||
response = model_response
|
||||
elif custom_llm_provider == "maritalk":
|
||||
maritalk_key = (
|
||||
api_key
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue