(feat) new function_to_dict litellm.util

This commit is contained in:
ishaan-jaff 2023-10-14 18:26:15 -07:00
parent 02e97acefa
commit 7848f1b5b7
3 changed files with 169 additions and 3 deletions

View file

@ -35,6 +35,7 @@ jobs:
pip install "boto3>=1.28.57"
pip install appdirs
pip install langchain
pip install numpydoc
- save_cache:
paths:
- ./venv

View file

@ -10,7 +10,7 @@ sys.path.insert(
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm.utils import trim_messages, get_token_count, get_valid_models, check_valid_key, validate_environment
from litellm.utils import trim_messages, get_token_count, get_valid_models, check_valid_key, validate_environment, function_to_dict
# Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils'
@ -101,4 +101,55 @@ def test_validate_environment_empty_model():
if api_key is None:
raise Exception()
# test_validate_environment_empty_model()
# test_validate_environment_empty_model()
def test_function_to_dict():
print("testing function to dict for get current weather")
def get_current_weather(location: str, unit: str):
"""Get the current weather in a given location
Parameters
----------
location : str
The city and state, e.g. San Francisco, CA
unit : {'celsius', 'fahrenheit'}
Temperature unit
Returns
-------
str
a sentence indicating the weather
"""
if location == "Boston, MA":
return "The weather is 12F"
function_json = litellm.utils.function_to_dict(get_current_weather)
print(function_json)
expected_output = {
'name': 'get_current_weather',
'description': 'Get the current weather in a given location',
'parameters': {
'type': 'object',
'properties': {
'location': {'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA'},
'unit': {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"}
},
'required': ['location', 'unit']
}
}
print(expected_output)
assert function_json['name'] == expected_output["name"]
assert function_json["description"] == expected_output["description"]
assert function_json["parameters"]["type"] == expected_output["parameters"]["type"]
assert function_json["parameters"]["properties"]["location"] == expected_output["parameters"]["properties"]["location"]
# the enum can change it can be - which is why we don't assert on unit
# {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"}
# {'type': 'string', 'description': 'Temperature unit', 'enum': "['celsius', 'fahrenheit']"}
assert function_json["parameters"]["required"] == expected_output["parameters"]["required"]
print("passed")
# test_function_to_dict()

View file

@ -1615,7 +1615,121 @@ def get_max_tokens(model: str):
return litellm.model_cost[model]
except:
raise Exception("This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json")
def json_schema_type(python_type_name: str):
"""Converts standard python types to json schema types
Parameters
----------
python_type_name : str
__name__ of type
Returns
-------
str
a standard JSON schema type, "string" if not recognized.
"""
python_to_json_schema_types = {
str.__name__: "string",
int.__name__: "integer",
float.__name__: "number",
bool.__name__: "boolean",
list.__name__: "array",
dict.__name__: "object",
"NoneType": "null",
}
return python_to_json_schema_types.get(python_type_name, "string")
def function_to_dict(input_function): # noqa: C901
"""Using type hints and numpy-styled docstring,
produce a dictionnary usable for OpenAI function calling
Parameters
----------
input_function : function
A function with a numpy-style docstring
Returns
-------
dictionnary
A dictionnary to add to the list passed to `functions` parameter of `litellm.completion`
"""
# Get function name and docstring
try:
import inspect
from numpydoc.docscrape import NumpyDocString
from ast import literal_eval
except Exception as e:
raise e
name = input_function.__name__
docstring = inspect.getdoc(input_function)
numpydoc = NumpyDocString(docstring)
description = "\n".join([s.strip() for s in numpydoc["Summary"]])
# Get function parameters and their types from annotations and docstring
parameters = {}
required_params = []
param_info = inspect.signature(input_function).parameters
for param_name, param in param_info.items():
if hasattr(param, "annotation"):
param_type = json_schema_type(param.annotation.__name__)
else:
param_type = None
param_description = None
param_enum = None
# Try to extract param description from docstring using numpydoc
for param_data in numpydoc["Parameters"]:
if param_data.name == param_name:
if hasattr(param_data, "type"):
# replace type from docstring rather than annotation
param_type = param_data.type
if "optional" in param_type:
param_type = param_type.split(",")[0]
elif "{" in param_type:
# may represent a set of acceptable values
# translating as enum for function calling
try:
param_enum = str(list(literal_eval(param_type)))
param_type = "string"
except Exception:
pass
param_type = json_schema_type(param_type)
param_description = "\n".join([s.strip() for s in param_data.desc])
param_dict = {
"type": param_type,
"description": param_description,
"enum": param_enum,
}
parameters[param_name] = dict(
[(k, v) for k, v in param_dict.items() if isinstance(v, str)]
)
# Check if the parameter has no default value (i.e., it's required)
if param.default == param.empty:
required_params.append(param_name)
# Create the dictionary
result = {
"name": name,
"description": description,
"parameters": {
"type": "object",
"properties": parameters,
},
}
# Add "required" key if there are required parameters
if required_params:
result["parameters"]["required"] = required_params
return result
def load_test_model(
model: str,