mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
fix(vertex_ai.py): fix exception mapping for vertex ai
This commit is contained in:
parent
7fda40e2be
commit
78d13ea6eb
4 changed files with 107 additions and 87 deletions
|
@ -1,7 +1,7 @@
|
||||||
import Tabs from '@theme/Tabs';
|
import Tabs from '@theme/Tabs';
|
||||||
import TabItem from '@theme/TabItem';
|
import TabItem from '@theme/TabItem';
|
||||||
|
|
||||||
# Local OpenAI Proxy Server
|
# [OLD PROXY 👉 [**NEW** proxy here](./simple_proxy.md)] Local OpenAI Proxy Server
|
||||||
|
|
||||||
A fast, and lightweight OpenAI-compatible server to call 100+ LLM APIs.
|
A fast, and lightweight OpenAI-compatible server to call 100+ LLM APIs.
|
||||||
|
|
||||||
|
|
|
@ -73,93 +73,96 @@ def completion(
|
||||||
try:
|
try:
|
||||||
import vertexai
|
import vertexai
|
||||||
except:
|
except:
|
||||||
raise Exception("vertexai import failed please run `pip install google-cloud-aiplatform`")
|
raise VertexAIError(status_code=400,message="vertexai import failed please run `pip install google-cloud-aiplatform`")
|
||||||
from vertexai.preview.language_models import ChatModel, CodeChatModel, InputOutputTextPair
|
try:
|
||||||
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
|
from vertexai.preview.language_models import ChatModel, CodeChatModel, InputOutputTextPair
|
||||||
|
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
|
||||||
|
|
||||||
vertexai.init(
|
vertexai.init(
|
||||||
project=vertex_project, location=vertex_location
|
project=vertex_project, location=vertex_location
|
||||||
)
|
|
||||||
|
|
||||||
## Load Config
|
|
||||||
config = litellm.VertexAIConfig.get_config()
|
|
||||||
for k, v in config.items():
|
|
||||||
if k not in optional_params:
|
|
||||||
optional_params[k] = v
|
|
||||||
|
|
||||||
# vertexai does not use an API key, it looks for credentials.json in the environment
|
|
||||||
|
|
||||||
prompt = " ".join([message["content"] for message in messages])
|
|
||||||
|
|
||||||
mode = ""
|
|
||||||
if model in litellm.vertex_chat_models:
|
|
||||||
chat_model = ChatModel.from_pretrained(model)
|
|
||||||
mode = "chat"
|
|
||||||
elif model in litellm.vertex_text_models:
|
|
||||||
text_model = TextGenerationModel.from_pretrained(model)
|
|
||||||
mode = "text"
|
|
||||||
elif model in litellm.vertex_code_text_models:
|
|
||||||
text_model = CodeGenerationModel.from_pretrained(model)
|
|
||||||
mode = "text"
|
|
||||||
else: # vertex_code_chat_models
|
|
||||||
chat_model = CodeChatModel.from_pretrained(model)
|
|
||||||
mode = "chat"
|
|
||||||
|
|
||||||
if mode == "chat":
|
|
||||||
chat = chat_model.start_chat()
|
|
||||||
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params})
|
|
||||||
|
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
|
||||||
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
|
|
||||||
# we handle this by removing 'stream' from optional params and sending the request
|
|
||||||
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
|
|
||||||
optional_params.pop("stream", None) # vertex ai raises an error when passing stream in optional params
|
|
||||||
model_response = chat.send_message_streaming(prompt, **optional_params)
|
|
||||||
optional_params["stream"] = True
|
|
||||||
return model_response
|
|
||||||
|
|
||||||
completion_response = chat.send_message(prompt, **optional_params).text
|
|
||||||
elif mode == "text":
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.pre_call(input=prompt, api_key=None)
|
|
||||||
|
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
|
||||||
optional_params.pop("stream", None) # See note above on handling streaming for vertex ai
|
|
||||||
model_response = text_model.predict_streaming(prompt, **optional_params)
|
|
||||||
optional_params["stream"] = True
|
|
||||||
return model_response
|
|
||||||
|
|
||||||
completion_response = text_model.predict(prompt, **optional_params).text
|
|
||||||
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.post_call(
|
|
||||||
input=prompt, api_key=None, original_response=completion_response
|
|
||||||
)
|
|
||||||
|
|
||||||
## RESPONSE OBJECT
|
|
||||||
if len(str(completion_response)) > 0:
|
|
||||||
model_response["choices"][0]["message"][
|
|
||||||
"content"
|
|
||||||
] = str(completion_response)
|
|
||||||
model_response["choices"][0]["message"]["content"] = str(completion_response)
|
|
||||||
model_response["created"] = int(time.time())
|
|
||||||
model_response["model"] = model
|
|
||||||
## CALCULATING USAGE
|
|
||||||
prompt_tokens = len(
|
|
||||||
encoding.encode(prompt)
|
|
||||||
)
|
|
||||||
completion_tokens = len(
|
|
||||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
||||||
)
|
|
||||||
usage = Usage(
|
|
||||||
prompt_tokens=prompt_tokens,
|
|
||||||
completion_tokens=completion_tokens,
|
|
||||||
total_tokens=prompt_tokens + completion_tokens
|
|
||||||
)
|
)
|
||||||
model_response.usage = usage
|
|
||||||
return model_response
|
## Load Config
|
||||||
|
config = litellm.VertexAIConfig.get_config()
|
||||||
|
for k, v in config.items():
|
||||||
|
if k not in optional_params:
|
||||||
|
optional_params[k] = v
|
||||||
|
|
||||||
|
# vertexai does not use an API key, it looks for credentials.json in the environment
|
||||||
|
|
||||||
|
prompt = " ".join([message["content"] for message in messages])
|
||||||
|
|
||||||
|
mode = ""
|
||||||
|
if model in litellm.vertex_chat_models:
|
||||||
|
chat_model = ChatModel.from_pretrained(model)
|
||||||
|
mode = "chat"
|
||||||
|
elif model in litellm.vertex_text_models:
|
||||||
|
text_model = TextGenerationModel.from_pretrained(model)
|
||||||
|
mode = "text"
|
||||||
|
elif model in litellm.vertex_code_text_models:
|
||||||
|
text_model = CodeGenerationModel.from_pretrained(model)
|
||||||
|
mode = "text"
|
||||||
|
else: # vertex_code_chat_models
|
||||||
|
chat_model = CodeChatModel.from_pretrained(model)
|
||||||
|
mode = "chat"
|
||||||
|
|
||||||
|
if mode == "chat":
|
||||||
|
chat = chat_model.start_chat()
|
||||||
|
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params})
|
||||||
|
|
||||||
|
if "stream" in optional_params and optional_params["stream"] == True:
|
||||||
|
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
|
||||||
|
# we handle this by removing 'stream' from optional params and sending the request
|
||||||
|
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
|
||||||
|
optional_params.pop("stream", None) # vertex ai raises an error when passing stream in optional params
|
||||||
|
model_response = chat.send_message_streaming(prompt, **optional_params)
|
||||||
|
optional_params["stream"] = True
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
completion_response = chat.send_message(prompt, **optional_params).text
|
||||||
|
elif mode == "text":
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.pre_call(input=prompt, api_key=None)
|
||||||
|
|
||||||
|
if "stream" in optional_params and optional_params["stream"] == True:
|
||||||
|
optional_params.pop("stream", None) # See note above on handling streaming for vertex ai
|
||||||
|
model_response = text_model.predict_streaming(prompt, **optional_params)
|
||||||
|
optional_params["stream"] = True
|
||||||
|
return model_response
|
||||||
|
|
||||||
|
completion_response = text_model.predict(prompt, **optional_params).text
|
||||||
|
|
||||||
|
## LOGGING
|
||||||
|
logging_obj.post_call(
|
||||||
|
input=prompt, api_key=None, original_response=completion_response
|
||||||
|
)
|
||||||
|
|
||||||
|
## RESPONSE OBJECT
|
||||||
|
if len(str(completion_response)) > 0:
|
||||||
|
model_response["choices"][0]["message"][
|
||||||
|
"content"
|
||||||
|
] = str(completion_response)
|
||||||
|
model_response["choices"][0]["message"]["content"] = str(completion_response)
|
||||||
|
model_response["created"] = int(time.time())
|
||||||
|
model_response["model"] = model
|
||||||
|
## CALCULATING USAGE
|
||||||
|
prompt_tokens = len(
|
||||||
|
encoding.encode(prompt)
|
||||||
|
)
|
||||||
|
completion_tokens = len(
|
||||||
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||||
|
)
|
||||||
|
usage = Usage(
|
||||||
|
prompt_tokens=prompt_tokens,
|
||||||
|
completion_tokens=completion_tokens,
|
||||||
|
total_tokens=prompt_tokens + completion_tokens
|
||||||
|
)
|
||||||
|
model_response.usage = usage
|
||||||
|
return model_response
|
||||||
|
except Exception as e:
|
||||||
|
raise VertexAIError(status_code=500, message=str(e))
|
||||||
|
|
||||||
|
|
||||||
def embedding():
|
def embedding():
|
||||||
|
|
|
@ -64,7 +64,7 @@ def test_context_window_with_fallbacks(model):
|
||||||
|
|
||||||
# for model in litellm.models_by_provider["bedrock"]:
|
# for model in litellm.models_by_provider["bedrock"]:
|
||||||
# test_context_window(model=model)
|
# test_context_window(model=model)
|
||||||
# test_context_window(model="command-nightly")
|
# test_context_window(model="chat-bison")
|
||||||
# test_context_window_with_fallbacks(model="command-nightly")
|
# test_context_window_with_fallbacks(model="command-nightly")
|
||||||
# Test 2: InvalidAuth Errors
|
# Test 2: InvalidAuth Errors
|
||||||
@pytest.mark.parametrize("model", models)
|
@pytest.mark.parametrize("model", models)
|
||||||
|
|
|
@ -3816,6 +3816,23 @@ def exception_type(
|
||||||
llm_provider="vertex_ai",
|
llm_provider="vertex_ai",
|
||||||
response=original_exception.response
|
response=original_exception.response
|
||||||
)
|
)
|
||||||
|
if hasattr(original_exception, "status_code"):
|
||||||
|
if original_exception.status_code == 400:
|
||||||
|
exception_mapping_worked = True
|
||||||
|
raise BadRequestError(
|
||||||
|
message=f"VertexAIException - {error_str}",
|
||||||
|
model=model,
|
||||||
|
llm_provider="vertex_ai",
|
||||||
|
response=original_exception.response
|
||||||
|
)
|
||||||
|
if original_exception.status_code == 500:
|
||||||
|
exception_mapping_worked = True
|
||||||
|
raise APIError(
|
||||||
|
message=f"VertexAIException - {error_str}",
|
||||||
|
model=model,
|
||||||
|
llm_provider="vertex_ai",
|
||||||
|
request=original_exception.request
|
||||||
|
)
|
||||||
elif custom_llm_provider == "palm":
|
elif custom_llm_provider == "palm":
|
||||||
if "503 Getting metadata" in error_str:
|
if "503 Getting metadata" in error_str:
|
||||||
# auth errors look like this
|
# auth errors look like this
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue