mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
refactor: add black formatting
This commit is contained in:
parent
f610148398
commit
79978c44ba
156 changed files with 19723 additions and 10869 deletions
|
@ -11,42 +11,61 @@ from copy import deepcopy
|
|||
import httpx
|
||||
from .prompt_templates.factory import prompt_factory, custom_prompt
|
||||
|
||||
|
||||
class SagemakerError(Exception):
|
||||
def __init__(self, status_code, message):
|
||||
self.status_code = status_code
|
||||
self.message = message
|
||||
self.request = httpx.Request(method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker")
|
||||
self.request = httpx.Request(
|
||||
method="POST", url="https://us-west-2.console.aws.amazon.com/sagemaker"
|
||||
)
|
||||
self.response = httpx.Response(status_code=status_code, request=self.request)
|
||||
super().__init__(
|
||||
self.message
|
||||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
class SagemakerConfig():
|
||||
|
||||
class SagemakerConfig:
|
||||
"""
|
||||
Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
|
||||
"""
|
||||
max_new_tokens: Optional[int]=None
|
||||
top_p: Optional[float]=None
|
||||
temperature: Optional[float]=None
|
||||
return_full_text: Optional[bool]=None
|
||||
|
||||
def __init__(self,
|
||||
max_new_tokens: Optional[int]=None,
|
||||
top_p: Optional[float]=None,
|
||||
temperature: Optional[float]=None,
|
||||
return_full_text: Optional[bool]=None) -> None:
|
||||
max_new_tokens: Optional[int] = None
|
||||
top_p: Optional[float] = None
|
||||
temperature: Optional[float] = None
|
||||
return_full_text: Optional[bool] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_new_tokens: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
temperature: Optional[float] = None,
|
||||
return_full_text: Optional[bool] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != 'self' and value is not None:
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {k: v for k, v in cls.__dict__.items()
|
||||
if not k.startswith('__')
|
||||
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
||||
and v is not None}
|
||||
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
|
||||
"""
|
||||
SAGEMAKER AUTH Keys/Vars
|
||||
os.environ['AWS_ACCESS_KEY_ID'] = ""
|
||||
|
@ -55,6 +74,7 @@ os.environ['AWS_SECRET_ACCESS_KEY'] = ""
|
|||
|
||||
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
|
||||
|
||||
|
||||
def completion(
|
||||
model: str,
|
||||
messages: list,
|
||||
|
@ -85,28 +105,30 @@ def completion(
|
|||
region_name=aws_region_name,
|
||||
)
|
||||
else:
|
||||
# aws_access_key_id is None, assume user is trying to auth using env variables
|
||||
# aws_access_key_id is None, assume user is trying to auth using env variables
|
||||
# boto3 automaticaly reads env variables
|
||||
|
||||
# we need to read region name from env
|
||||
# I assume majority of users use .env for auth
|
||||
# I assume majority of users use .env for auth
|
||||
region_name = (
|
||||
get_secret("AWS_REGION_NAME") or
|
||||
"us-west-2" # default to us-west-2 if user not specified
|
||||
get_secret("AWS_REGION_NAME")
|
||||
or "us-west-2" # default to us-west-2 if user not specified
|
||||
)
|
||||
client = boto3.client(
|
||||
service_name="sagemaker-runtime",
|
||||
region_name=region_name,
|
||||
)
|
||||
|
||||
|
||||
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
|
||||
inference_params = deepcopy(optional_params)
|
||||
inference_params.pop("stream", None)
|
||||
|
||||
## Load Config
|
||||
config = litellm.SagemakerConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if k not in inference_params: # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
config = litellm.SagemakerConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in inference_params
|
||||
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
inference_params[k] = v
|
||||
|
||||
model = model
|
||||
|
@ -114,25 +136,26 @@ def completion(
|
|||
# check if the model has a registered custom prompt
|
||||
model_prompt_details = custom_prompt_dict[model]
|
||||
prompt = custom_prompt(
|
||||
role_dict=model_prompt_details.get("roles", None),
|
||||
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
|
||||
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
||||
messages=messages
|
||||
role_dict=model_prompt_details.get("roles", None),
|
||||
initial_prompt_value=model_prompt_details.get("initial_prompt_value", ""),
|
||||
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
||||
messages=messages,
|
||||
)
|
||||
else:
|
||||
if hf_model_name is None:
|
||||
if "llama-2" in model.lower(): # llama-2 model
|
||||
if "chat" in model.lower(): # apply llama2 chat template
|
||||
if "llama-2" in model.lower(): # llama-2 model
|
||||
if "chat" in model.lower(): # apply llama2 chat template
|
||||
hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
|
||||
else: # apply regular llama2 template
|
||||
else: # apply regular llama2 template
|
||||
hf_model_name = "meta-llama/Llama-2-7b"
|
||||
hf_model_name = hf_model_name or model # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
|
||||
hf_model_name = (
|
||||
hf_model_name or model
|
||||
) # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
|
||||
prompt = prompt_factory(model=hf_model_name, messages=messages)
|
||||
|
||||
data = json.dumps({
|
||||
"inputs": prompt,
|
||||
"parameters": inference_params
|
||||
}).encode('utf-8')
|
||||
data = json.dumps({"inputs": prompt, "parameters": inference_params}).encode(
|
||||
"utf-8"
|
||||
)
|
||||
|
||||
## LOGGING
|
||||
request_str = f"""
|
||||
|
@ -142,31 +165,35 @@ def completion(
|
|||
Body={data},
|
||||
CustomAttributes="accept_eula=true",
|
||||
)
|
||||
""" # type: ignore
|
||||
""" # type: ignore
|
||||
logging_obj.pre_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": data, "request_str": request_str, "hf_model_name": hf_model_name},
|
||||
)
|
||||
input=prompt,
|
||||
api_key="",
|
||||
additional_args={
|
||||
"complete_input_dict": data,
|
||||
"request_str": request_str,
|
||||
"hf_model_name": hf_model_name,
|
||||
},
|
||||
)
|
||||
## COMPLETION CALL
|
||||
try:
|
||||
try:
|
||||
response = client.invoke_endpoint(
|
||||
EndpointName=model,
|
||||
ContentType="application/json",
|
||||
Body=data,
|
||||
CustomAttributes="accept_eula=true",
|
||||
)
|
||||
except Exception as e:
|
||||
except Exception as e:
|
||||
raise SagemakerError(status_code=500, message=f"{str(e)}")
|
||||
|
||||
|
||||
response = response["Body"].read().decode("utf8")
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
input=prompt,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response}")
|
||||
## RESPONSE OBJECT
|
||||
completion_response = json.loads(response)
|
||||
|
@ -177,19 +204,20 @@ def completion(
|
|||
completion_output += completion_response_choices["generation"]
|
||||
elif "generated_text" in completion_response_choices:
|
||||
completion_output += completion_response_choices["generated_text"]
|
||||
|
||||
# check if the prompt template is part of output, if so - filter it out
|
||||
|
||||
# check if the prompt template is part of output, if so - filter it out
|
||||
if completion_output.startswith(prompt) and "<s>" in prompt:
|
||||
completion_output = completion_output.replace(prompt, "", 1)
|
||||
|
||||
model_response["choices"][0]["message"]["content"] = completion_output
|
||||
except:
|
||||
raise SagemakerError(message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}", status_code=500)
|
||||
raise SagemakerError(
|
||||
message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
|
||||
status_code=500,
|
||||
)
|
||||
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(
|
||||
encoding.encode(prompt)
|
||||
)
|
||||
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
||||
prompt_tokens = len(encoding.encode(prompt))
|
||||
completion_tokens = len(
|
||||
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
||||
)
|
||||
|
@ -197,28 +225,32 @@ def completion(
|
|||
model_response["created"] = int(time.time())
|
||||
model_response["model"] = model
|
||||
usage = Usage(
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens
|
||||
)
|
||||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
total_tokens=prompt_tokens + completion_tokens,
|
||||
)
|
||||
model_response.usage = usage
|
||||
return model_response
|
||||
|
||||
def embedding(model: str,
|
||||
input: list,
|
||||
model_response: EmbeddingResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
custom_prompt_dict={},
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None):
|
||||
|
||||
def embedding(
|
||||
model: str,
|
||||
input: list,
|
||||
model_response: EmbeddingResponse,
|
||||
print_verbose: Callable,
|
||||
encoding,
|
||||
logging_obj,
|
||||
custom_prompt_dict={},
|
||||
optional_params=None,
|
||||
litellm_params=None,
|
||||
logger_fn=None,
|
||||
):
|
||||
"""
|
||||
Supports Huggingface Jumpstart embeddings like GPT-6B
|
||||
Supports Huggingface Jumpstart embeddings like GPT-6B
|
||||
"""
|
||||
### BOTO3 INIT
|
||||
import boto3
|
||||
import boto3
|
||||
|
||||
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
||||
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
||||
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
||||
|
@ -234,34 +266,34 @@ def embedding(model: str,
|
|||
region_name=aws_region_name,
|
||||
)
|
||||
else:
|
||||
# aws_access_key_id is None, assume user is trying to auth using env variables
|
||||
# aws_access_key_id is None, assume user is trying to auth using env variables
|
||||
# boto3 automaticaly reads env variables
|
||||
|
||||
# we need to read region name from env
|
||||
# I assume majority of users use .env for auth
|
||||
# I assume majority of users use .env for auth
|
||||
region_name = (
|
||||
get_secret("AWS_REGION_NAME") or
|
||||
"us-west-2" # default to us-west-2 if user not specified
|
||||
get_secret("AWS_REGION_NAME")
|
||||
or "us-west-2" # default to us-west-2 if user not specified
|
||||
)
|
||||
client = boto3.client(
|
||||
service_name="sagemaker-runtime",
|
||||
region_name=region_name,
|
||||
)
|
||||
|
||||
|
||||
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
|
||||
inference_params = deepcopy(optional_params)
|
||||
inference_params.pop("stream", None)
|
||||
|
||||
## Load Config
|
||||
config = litellm.SagemakerConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if k not in inference_params: # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
config = litellm.SagemakerConfig.get_config()
|
||||
for k, v in config.items():
|
||||
if (
|
||||
k not in inference_params
|
||||
): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
|
||||
inference_params[k] = v
|
||||
|
||||
#### HF EMBEDDING LOGIC
|
||||
data = json.dumps({
|
||||
"text_inputs": input
|
||||
}).encode('utf-8')
|
||||
#### HF EMBEDDING LOGIC
|
||||
data = json.dumps({"text_inputs": input}).encode("utf-8")
|
||||
|
||||
## LOGGING
|
||||
request_str = f"""
|
||||
|
@ -270,67 +302,65 @@ def embedding(model: str,
|
|||
ContentType="application/json",
|
||||
Body={data},
|
||||
CustomAttributes="accept_eula=true",
|
||||
)""" # type: ignore
|
||||
)""" # type: ignore
|
||||
logging_obj.pre_call(
|
||||
input=input,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": data, "request_str": request_str},
|
||||
)
|
||||
input=input,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": data, "request_str": request_str},
|
||||
)
|
||||
## EMBEDDING CALL
|
||||
try:
|
||||
try:
|
||||
response = client.invoke_endpoint(
|
||||
EndpointName=model,
|
||||
ContentType="application/json",
|
||||
Body=data,
|
||||
CustomAttributes="accept_eula=true",
|
||||
)
|
||||
except Exception as e:
|
||||
except Exception as e:
|
||||
raise SagemakerError(status_code=500, message=f"{str(e)}")
|
||||
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=input,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": data},
|
||||
original_response=response,
|
||||
)
|
||||
|
||||
input=input,
|
||||
api_key="",
|
||||
additional_args={"complete_input_dict": data},
|
||||
original_response=response,
|
||||
)
|
||||
|
||||
response = json.loads(response["Body"].read().decode("utf8"))
|
||||
## LOGGING
|
||||
logging_obj.post_call(
|
||||
input=input,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
input=input,
|
||||
api_key="",
|
||||
original_response=response,
|
||||
additional_args={"complete_input_dict": data},
|
||||
)
|
||||
print_verbose(f"raw model_response: {response}")
|
||||
if "embedding" not in response:
|
||||
if "embedding" not in response:
|
||||
raise SagemakerError(status_code=500, message="embedding not found in response")
|
||||
embeddings = response['embedding']
|
||||
embeddings = response["embedding"]
|
||||
|
||||
if not isinstance(embeddings, list):
|
||||
raise SagemakerError(status_code=422, message=f"Response not in expected format - {embeddings}")
|
||||
|
||||
raise SagemakerError(
|
||||
status_code=422, message=f"Response not in expected format - {embeddings}"
|
||||
)
|
||||
|
||||
output_data = []
|
||||
for idx, embedding in enumerate(embeddings):
|
||||
output_data.append(
|
||||
{
|
||||
"object": "embedding",
|
||||
"index": idx,
|
||||
"embedding": embedding
|
||||
}
|
||||
{"object": "embedding", "index": idx, "embedding": embedding}
|
||||
)
|
||||
|
||||
model_response["object"] = "list"
|
||||
model_response["data"] = output_data
|
||||
model_response["model"] = model
|
||||
|
||||
|
||||
input_tokens = 0
|
||||
for text in input:
|
||||
input_tokens+=len(encoding.encode(text))
|
||||
input_tokens += len(encoding.encode(text))
|
||||
|
||||
model_response["usage"] = Usage(
|
||||
prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens
|
||||
)
|
||||
|
||||
model_response["usage"] = Usage(prompt_tokens=input_tokens, completion_tokens=0, total_tokens=input_tokens)
|
||||
|
||||
return model_response
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue