mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
Merge branch 'BerriAI:main' into main
This commit is contained in:
commit
79e98ef012
28 changed files with 1144 additions and 33 deletions
|
@ -1,4 +1,3 @@
|
|||
import os
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
from datetime import datetime
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
-- AlterTable
|
||||
ALTER TABLE "LiteLLM_DailyUserSpend" ADD COLUMN "api_requests" INTEGER NOT NULL DEFAULT 0;
|
||||
|
|
@ -188,7 +188,13 @@ Currently implemented for:
|
|||
- OpenAI (if OPENAI_API_KEY is set)
|
||||
- Fireworks AI (if FIREWORKS_AI_API_KEY is set)
|
||||
- LiteLLM Proxy (if LITELLM_PROXY_API_KEY is set)
|
||||
- Gemini (if GEMINI_API_KEY is set)
|
||||
- XAI (if XAI_API_KEY is set)
|
||||
- Anthropic (if ANTHROPIC_API_KEY is set)
|
||||
|
||||
You can also specify a custom provider to check:
|
||||
|
||||
**All providers**:
|
||||
```python
|
||||
from litellm import get_valid_models
|
||||
|
||||
|
@ -196,6 +202,14 @@ valid_models = get_valid_models(check_provider_endpoint=True)
|
|||
print(valid_models)
|
||||
```
|
||||
|
||||
**Specific provider**:
|
||||
```python
|
||||
from litellm import get_valid_models
|
||||
|
||||
valid_models = get_valid_models(check_provider_endpoint=True, custom_llm_provider="openai")
|
||||
print(valid_models)
|
||||
```
|
||||
|
||||
### `validate_environment(model: str)`
|
||||
|
||||
This helper tells you if you have all the required environment variables for a model, and if not - what's missing.
|
||||
|
|
|
@ -813,6 +813,7 @@ from .llms.oobabooga.chat.transformation import OobaboogaConfig
|
|||
from .llms.maritalk import MaritalkConfig
|
||||
from .llms.openrouter.chat.transformation import OpenrouterConfig
|
||||
from .llms.anthropic.chat.transformation import AnthropicConfig
|
||||
from .llms.anthropic.common_utils import AnthropicModelInfo
|
||||
from .llms.groq.stt.transformation import GroqSTTConfig
|
||||
from .llms.anthropic.completion.transformation import AnthropicTextConfig
|
||||
from .llms.triton.completion.transformation import TritonConfig
|
||||
|
@ -848,6 +849,7 @@ from .llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
|
|||
VertexGeminiConfig,
|
||||
VertexGeminiConfig as VertexAIConfig,
|
||||
)
|
||||
from .llms.gemini.common_utils import GeminiModelInfo
|
||||
from .llms.gemini.chat.transformation import (
|
||||
GoogleAIStudioGeminiConfig,
|
||||
GoogleAIStudioGeminiConfig as GeminiConfig, # aliased to maintain backwards compatibility
|
||||
|
@ -984,6 +986,7 @@ from .llms.fireworks_ai.embed.fireworks_ai_transformation import (
|
|||
from .llms.friendliai.chat.transformation import FriendliaiChatConfig
|
||||
from .llms.jina_ai.embedding.transformation import JinaAIEmbeddingConfig
|
||||
from .llms.xai.chat.transformation import XAIChatConfig
|
||||
from .llms.xai.common_utils import XAIModelInfo
|
||||
from .llms.volcengine import VolcEngineConfig
|
||||
from .llms.codestral.completion.transformation import CodestralTextCompletionConfig
|
||||
from .llms.azure.azure import (
|
||||
|
|
|
@ -6,7 +6,10 @@ from typing import Optional, Union
|
|||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
|
||||
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
|
||||
|
||||
class AnthropicError(BaseLLMException):
|
||||
|
@ -19,6 +22,54 @@ class AnthropicError(BaseLLMException):
|
|||
super().__init__(status_code=status_code, message=message, headers=headers)
|
||||
|
||||
|
||||
class AnthropicModelInfo(BaseLLMModelInfo):
|
||||
@staticmethod
|
||||
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
|
||||
return (
|
||||
api_base
|
||||
or get_secret_str("ANTHROPIC_API_BASE")
|
||||
or "https://api.anthropic.com"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
|
||||
return api_key or get_secret_str("ANTHROPIC_API_KEY")
|
||||
|
||||
@staticmethod
|
||||
def get_base_model(model: Optional[str] = None) -> Optional[str]:
|
||||
return model.replace("anthropic/", "") if model else None
|
||||
|
||||
def get_models(
|
||||
self, api_key: Optional[str] = None, api_base: Optional[str] = None
|
||||
) -> list[str]:
|
||||
api_base = AnthropicModelInfo.get_api_base(api_base)
|
||||
api_key = AnthropicModelInfo.get_api_key(api_key)
|
||||
if api_base is None or api_key is None:
|
||||
raise ValueError(
|
||||
"ANTHROPIC_API_BASE or ANTHROPIC_API_KEY is not set. Please set the environment variable, to query Anthropic's `/models` endpoint."
|
||||
)
|
||||
response = litellm.module_level_client.get(
|
||||
url=f"{api_base}/v1/models",
|
||||
headers={"x-api-key": api_key, "anthropic-version": "2023-06-01"},
|
||||
)
|
||||
|
||||
try:
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError:
|
||||
raise Exception(
|
||||
f"Failed to fetch models from Anthropic. Status code: {response.status_code}, Response: {response.text}"
|
||||
)
|
||||
|
||||
models = response.json()["data"]
|
||||
|
||||
litellm_model_names = []
|
||||
for model in models:
|
||||
stripped_model_name = model["id"]
|
||||
litellm_model_name = "anthropic/" + stripped_model_name
|
||||
litellm_model_names.append(litellm_model_name)
|
||||
return litellm_model_names
|
||||
|
||||
|
||||
def process_anthropic_headers(headers: Union[httpx.Headers, dict]) -> dict:
|
||||
openai_headers = {}
|
||||
if "anthropic-ratelimit-requests-limit" in headers:
|
||||
|
|
|
@ -19,11 +19,19 @@ class BaseLLMModelInfo(ABC):
|
|||
self,
|
||||
model: str,
|
||||
) -> Optional[ProviderSpecificModelInfo]:
|
||||
"""
|
||||
Default values all models of this provider support.
|
||||
"""
|
||||
return None
|
||||
|
||||
@abstractmethod
|
||||
def get_models(self) -> List[str]:
|
||||
pass
|
||||
def get_models(
|
||||
self, api_key: Optional[str] = None, api_base: Optional[str] = None
|
||||
) -> List[str]:
|
||||
"""
|
||||
Returns a list of models supported by this provider.
|
||||
"""
|
||||
return []
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
|
|
52
litellm/llms/gemini/common_utils.py
Normal file
52
litellm/llms/gemini/common_utils.py
Normal file
|
@ -0,0 +1,52 @@
|
|||
from typing import List, Optional
|
||||
|
||||
import litellm
|
||||
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
|
||||
|
||||
class GeminiModelInfo(BaseLLMModelInfo):
|
||||
@staticmethod
|
||||
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
|
||||
return (
|
||||
api_base
|
||||
or get_secret_str("GEMINI_API_BASE")
|
||||
or "https://generativelanguage.googleapis.com/v1beta"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
|
||||
return api_key or (get_secret_str("GEMINI_API_KEY"))
|
||||
|
||||
@staticmethod
|
||||
def get_base_model(model: str) -> Optional[str]:
|
||||
return model.replace("gemini/", "")
|
||||
|
||||
def get_models(
|
||||
self, api_key: Optional[str] = None, api_base: Optional[str] = None
|
||||
) -> List[str]:
|
||||
|
||||
api_base = GeminiModelInfo.get_api_base(api_base)
|
||||
api_key = GeminiModelInfo.get_api_key(api_key)
|
||||
if api_base is None or api_key is None:
|
||||
raise ValueError(
|
||||
"GEMINI_API_BASE or GEMINI_API_KEY is not set. Please set the environment variable, to query Gemini's `/models` endpoint."
|
||||
)
|
||||
|
||||
response = litellm.module_level_client.get(
|
||||
url=f"{api_base}/models?key={api_key}",
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
raise ValueError(
|
||||
f"Failed to fetch models from Gemini. Status code: {response.status_code}, Response: {response.json()}"
|
||||
)
|
||||
|
||||
models = response.json()["models"]
|
||||
|
||||
litellm_model_names = []
|
||||
for model in models:
|
||||
stripped_model_name = model["name"].strip("models/")
|
||||
litellm_model_name = "gemini/" + stripped_model_name
|
||||
litellm_model_names.append(litellm_model_name)
|
||||
return litellm_model_names
|
|
@ -80,6 +80,7 @@ class MistralConfig(OpenAIGPTConfig):
|
|||
"temperature",
|
||||
"top_p",
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"seed",
|
||||
|
@ -105,6 +106,10 @@ class MistralConfig(OpenAIGPTConfig):
|
|||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if (
|
||||
param == "max_completion_tokens"
|
||||
): # max_completion_tokens should take priority
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "tools":
|
||||
optional_params["tools"] = value
|
||||
if param == "stream" and value is True:
|
||||
|
|
|
@ -11,7 +11,9 @@ class TopazException(BaseLLMException):
|
|||
|
||||
|
||||
class TopazModelInfo(BaseLLMModelInfo):
|
||||
def get_models(self) -> List[str]:
|
||||
def get_models(
|
||||
self, api_key: Optional[str] = None, api_base: Optional[str] = None
|
||||
) -> List[str]:
|
||||
return [
|
||||
"topaz/Standard V2",
|
||||
"topaz/Low Resolution V2",
|
||||
|
|
51
litellm/llms/xai/common_utils.py
Normal file
51
litellm/llms/xai/common_utils.py
Normal file
|
@ -0,0 +1,51 @@
|
|||
from typing import Optional
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.llms.base_llm.base_utils import BaseLLMModelInfo
|
||||
from litellm.secret_managers.main import get_secret_str
|
||||
|
||||
|
||||
class XAIModelInfo(BaseLLMModelInfo):
|
||||
@staticmethod
|
||||
def get_api_base(api_base: Optional[str] = None) -> Optional[str]:
|
||||
return api_base or get_secret_str("XAI_API_BASE") or "https://api.x.ai"
|
||||
|
||||
@staticmethod
|
||||
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
|
||||
return api_key or get_secret_str("XAI_API_KEY")
|
||||
|
||||
@staticmethod
|
||||
def get_base_model(model: str) -> Optional[str]:
|
||||
return model.replace("xai/", "")
|
||||
|
||||
def get_models(
|
||||
self, api_key: Optional[str] = None, api_base: Optional[str] = None
|
||||
) -> list[str]:
|
||||
api_base = self.get_api_base(api_base)
|
||||
api_key = self.get_api_key(api_key)
|
||||
if api_base is None or api_key is None:
|
||||
raise ValueError(
|
||||
"XAI_API_BASE or XAI_API_KEY is not set. Please set the environment variable, to query XAI's `/models` endpoint."
|
||||
)
|
||||
response = litellm.module_level_client.get(
|
||||
url=f"{api_base}/v1/models",
|
||||
headers={"Authorization": f"Bearer {api_key}"},
|
||||
)
|
||||
|
||||
try:
|
||||
response.raise_for_status()
|
||||
except httpx.HTTPStatusError:
|
||||
raise Exception(
|
||||
f"Failed to fetch models from XAI. Status code: {response.status_code}, Response: {response.text}"
|
||||
)
|
||||
|
||||
models = response.json()["data"]
|
||||
|
||||
litellm_model_names = []
|
||||
for model in models:
|
||||
stripped_model_name = model["id"]
|
||||
litellm_model_name = "xai/" + stripped_model_name
|
||||
litellm_model_names.append(litellm_model_name)
|
||||
return litellm_model_names
|
|
@ -2718,3 +2718,4 @@ class DailyUserSpendTransaction(TypedDict):
|
|||
prompt_tokens: int
|
||||
completion_tokens: int
|
||||
spend: float
|
||||
api_requests: int
|
||||
|
|
|
@ -3,6 +3,7 @@ This file contains the PrismaWrapper class, which is used to wrap the Prisma cli
|
|||
"""
|
||||
|
||||
import asyncio
|
||||
import glob
|
||||
import os
|
||||
import random
|
||||
import subprocess
|
||||
|
@ -178,6 +179,69 @@ class PrismaManager:
|
|||
verbose_proxy_logger.warning(f"Error creating baseline migration: {e}")
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def _copy_spend_tracking_migrations(prisma_dir: str) -> bool:
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
"""
|
||||
Check for and copy over spend tracking migrations if they exist in the deploy directory.
|
||||
Returns True if migrations were found and copied, False otherwise.
|
||||
"""
|
||||
try:
|
||||
# Get the current file's directory
|
||||
current_dir = Path(__file__).parent
|
||||
|
||||
# Check for migrations in the deploy directory (../../deploy/migrations)
|
||||
deploy_migrations_dir = (
|
||||
current_dir.parent.parent.parent / "deploy" / "migrations"
|
||||
)
|
||||
|
||||
# Local migrations directory
|
||||
local_migrations_dir = Path(prisma_dir + "/migrations")
|
||||
|
||||
if deploy_migrations_dir.exists():
|
||||
# Create local migrations directory if it doesn't exist
|
||||
local_migrations_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Copy all migration files
|
||||
# Copy entire migrations folder recursively
|
||||
shutil.copytree(
|
||||
deploy_migrations_dir, local_migrations_dir, dirs_exist_ok=True
|
||||
)
|
||||
|
||||
return True
|
||||
return False
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def _get_migration_names(migrations_dir: str) -> list:
|
||||
"""Get all migration directory names from the migrations folder"""
|
||||
migration_paths = glob.glob(f"{migrations_dir}/*/migration.sql")
|
||||
return [Path(p).parent.name for p in migration_paths]
|
||||
|
||||
@staticmethod
|
||||
def _resolve_all_migrations(migrations_dir: str):
|
||||
"""Mark all existing migrations as applied"""
|
||||
migration_names = PrismaManager._get_migration_names(migrations_dir)
|
||||
for migration_name in migration_names:
|
||||
try:
|
||||
verbose_proxy_logger.info(f"Resolving migration: {migration_name}")
|
||||
subprocess.run(
|
||||
["prisma", "migrate", "resolve", "--applied", migration_name],
|
||||
timeout=60,
|
||||
check=True,
|
||||
capture_output=True,
|
||||
text=True,
|
||||
)
|
||||
verbose_proxy_logger.debug(f"Resolved migration: {migration_name}")
|
||||
except subprocess.CalledProcessError as e:
|
||||
if "is already recorded as applied in the database." not in e.stderr:
|
||||
verbose_proxy_logger.warning(
|
||||
f"Failed to resolve migration {migration_name}: {e.stderr}"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def setup_database(use_migrate: bool = False) -> bool:
|
||||
"""
|
||||
|
@ -194,8 +258,10 @@ class PrismaManager:
|
|||
os.chdir(prisma_dir)
|
||||
try:
|
||||
if use_migrate:
|
||||
PrismaManager._copy_spend_tracking_migrations(
|
||||
prisma_dir
|
||||
) # place a migration in the migrations directory
|
||||
verbose_proxy_logger.info("Running prisma migrate deploy")
|
||||
# First try to run migrate deploy directly
|
||||
try:
|
||||
subprocess.run(
|
||||
["prisma", "migrate", "deploy"],
|
||||
|
@ -205,25 +271,31 @@ class PrismaManager:
|
|||
text=True,
|
||||
)
|
||||
verbose_proxy_logger.info("prisma migrate deploy completed")
|
||||
|
||||
# Resolve all migrations in the migrations directory
|
||||
migrations_dir = os.path.join(prisma_dir, "migrations")
|
||||
PrismaManager._resolve_all_migrations(migrations_dir)
|
||||
|
||||
return True
|
||||
except subprocess.CalledProcessError as e:
|
||||
# Check if this is the non-empty schema error
|
||||
verbose_proxy_logger.warning(
|
||||
f"prisma db error: {e.stderr}, e: {e.stdout}"
|
||||
)
|
||||
if (
|
||||
"P3005" in e.stderr
|
||||
and "database schema is not empty" in e.stderr
|
||||
):
|
||||
# Create baseline migration
|
||||
verbose_proxy_logger.info("Creating baseline migration")
|
||||
if PrismaManager._create_baseline_migration(schema_path):
|
||||
# Try migrate deploy again after baseline
|
||||
subprocess.run(
|
||||
["prisma", "migrate", "deploy"],
|
||||
timeout=60,
|
||||
check=True,
|
||||
verbose_proxy_logger.info(
|
||||
"Resolving all migrations after baseline"
|
||||
)
|
||||
|
||||
# Resolve all migrations after baseline
|
||||
migrations_dir = os.path.join(prisma_dir, "migrations")
|
||||
PrismaManager._resolve_all_migrations(migrations_dir)
|
||||
|
||||
return True
|
||||
else:
|
||||
# If it's a different error, raise it
|
||||
raise e
|
||||
else:
|
||||
# Use prisma db push with increased timeout
|
||||
subprocess.run(
|
||||
|
|
|
@ -14,8 +14,9 @@ These are members of a Team on LiteLLM
|
|||
import asyncio
|
||||
import traceback
|
||||
import uuid
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any, List, Optional, Union, cast
|
||||
from datetime import date, datetime, timedelta, timezone
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List, Optional, TypedDict, Union, cast
|
||||
|
||||
import fastapi
|
||||
from fastapi import APIRouter, Depends, Header, HTTPException, Request, status
|
||||
|
@ -1242,3 +1243,291 @@ async def ui_view_users(
|
|||
except Exception as e:
|
||||
verbose_proxy_logger.exception(f"Error searching users: {str(e)}")
|
||||
raise HTTPException(status_code=500, detail=f"Error searching users: {str(e)}")
|
||||
|
||||
|
||||
class GroupByDimension(str, Enum):
|
||||
DATE = "date"
|
||||
MODEL = "model"
|
||||
API_KEY = "api_key"
|
||||
TEAM = "team"
|
||||
ORGANIZATION = "organization"
|
||||
MODEL_GROUP = "model_group"
|
||||
PROVIDER = "custom_llm_provider"
|
||||
|
||||
|
||||
class SpendMetrics(BaseModel):
|
||||
spend: float = Field(default=0.0)
|
||||
prompt_tokens: int = Field(default=0)
|
||||
completion_tokens: int = Field(default=0)
|
||||
total_tokens: int = Field(default=0)
|
||||
api_requests: int = Field(default=0)
|
||||
|
||||
|
||||
class BreakdownMetrics(BaseModel):
|
||||
"""Breakdown of spend by different dimensions"""
|
||||
|
||||
models: Dict[str, SpendMetrics] = Field(default_factory=dict) # model -> metrics
|
||||
providers: Dict[str, SpendMetrics] = Field(
|
||||
default_factory=dict
|
||||
) # provider -> metrics
|
||||
api_keys: Dict[str, SpendMetrics] = Field(
|
||||
default_factory=dict
|
||||
) # api_key -> metrics
|
||||
|
||||
|
||||
class DailySpendData(BaseModel):
|
||||
date: date
|
||||
metrics: SpendMetrics
|
||||
breakdown: BreakdownMetrics = Field(default_factory=BreakdownMetrics)
|
||||
|
||||
|
||||
class DailySpendMetadata(BaseModel):
|
||||
total_spend: float = Field(default=0.0)
|
||||
total_prompt_tokens: int = Field(default=0)
|
||||
total_completion_tokens: int = Field(default=0)
|
||||
total_api_requests: int = Field(default=0)
|
||||
page: int = Field(default=1)
|
||||
total_pages: int = Field(default=1)
|
||||
has_more: bool = Field(default=False)
|
||||
|
||||
|
||||
class SpendAnalyticsPaginatedResponse(BaseModel):
|
||||
results: List[DailySpendData]
|
||||
metadata: DailySpendMetadata = Field(default_factory=DailySpendMetadata)
|
||||
|
||||
|
||||
class LiteLLM_DailyUserSpend(BaseModel):
|
||||
id: str
|
||||
user_id: str
|
||||
date: str
|
||||
api_key: str
|
||||
model: str
|
||||
model_group: Optional[str] = None
|
||||
custom_llm_provider: Optional[str] = None
|
||||
prompt_tokens: int = 0
|
||||
completion_tokens: int = 0
|
||||
spend: float = 0.0
|
||||
api_requests: int = 0
|
||||
|
||||
|
||||
class GroupedData(TypedDict):
|
||||
metrics: SpendMetrics
|
||||
breakdown: BreakdownMetrics
|
||||
|
||||
|
||||
def update_metrics(
|
||||
group_metrics: SpendMetrics, record: LiteLLM_DailyUserSpend
|
||||
) -> SpendMetrics:
|
||||
group_metrics.spend += record.spend
|
||||
group_metrics.prompt_tokens += record.prompt_tokens
|
||||
group_metrics.completion_tokens += record.completion_tokens
|
||||
group_metrics.total_tokens += record.prompt_tokens + record.completion_tokens
|
||||
group_metrics.api_requests += record.api_requests
|
||||
return group_metrics
|
||||
|
||||
|
||||
def update_breakdown_metrics(
|
||||
breakdown: BreakdownMetrics, record: LiteLLM_DailyUserSpend
|
||||
) -> BreakdownMetrics:
|
||||
"""Updates breakdown metrics for a single record using the existing update_metrics function"""
|
||||
|
||||
# Update model breakdown
|
||||
if record.model not in breakdown.models:
|
||||
breakdown.models[record.model] = SpendMetrics()
|
||||
breakdown.models[record.model] = update_metrics(
|
||||
breakdown.models[record.model], record
|
||||
)
|
||||
|
||||
# Update provider breakdown
|
||||
provider = record.custom_llm_provider or "unknown"
|
||||
if provider not in breakdown.providers:
|
||||
breakdown.providers[provider] = SpendMetrics()
|
||||
breakdown.providers[provider] = update_metrics(
|
||||
breakdown.providers[provider], record
|
||||
)
|
||||
|
||||
# Update api key breakdown
|
||||
if record.api_key not in breakdown.api_keys:
|
||||
breakdown.api_keys[record.api_key] = SpendMetrics()
|
||||
breakdown.api_keys[record.api_key] = update_metrics(
|
||||
breakdown.api_keys[record.api_key], record
|
||||
)
|
||||
|
||||
return breakdown
|
||||
|
||||
|
||||
@router.get(
|
||||
"/user/daily/activity",
|
||||
tags=["Budget & Spend Tracking", "Internal User management"],
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
response_model=SpendAnalyticsPaginatedResponse,
|
||||
)
|
||||
async def get_user_daily_activity(
|
||||
start_date: Optional[str] = fastapi.Query(
|
||||
default=None,
|
||||
description="Start date in YYYY-MM-DD format",
|
||||
),
|
||||
end_date: Optional[str] = fastapi.Query(
|
||||
default=None,
|
||||
description="End date in YYYY-MM-DD format",
|
||||
),
|
||||
group_by: List[GroupByDimension] = fastapi.Query(
|
||||
default=[GroupByDimension.DATE],
|
||||
description="Dimensions to group by. Can combine multiple (e.g. date,team)",
|
||||
),
|
||||
view_by: Literal["team", "organization", "user"] = fastapi.Query(
|
||||
default="user",
|
||||
description="View spend at team/org/user level",
|
||||
),
|
||||
team_id: Optional[str] = fastapi.Query(
|
||||
default=None,
|
||||
description="Filter by specific team",
|
||||
),
|
||||
org_id: Optional[str] = fastapi.Query(
|
||||
default=None,
|
||||
description="Filter by specific organization",
|
||||
),
|
||||
model: Optional[str] = fastapi.Query(
|
||||
default=None,
|
||||
description="Filter by specific model",
|
||||
),
|
||||
api_key: Optional[str] = fastapi.Query(
|
||||
default=None,
|
||||
description="Filter by specific API key",
|
||||
),
|
||||
page: int = fastapi.Query(
|
||||
default=1, description="Page number for pagination", ge=1
|
||||
),
|
||||
page_size: int = fastapi.Query(
|
||||
default=50, description="Items per page", ge=1, le=100
|
||||
),
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
) -> SpendAnalyticsPaginatedResponse:
|
||||
"""
|
||||
[BETA] This is a beta endpoint. It will change.
|
||||
|
||||
Meant to optimize querying spend data for analytics for a user.
|
||||
|
||||
Returns:
|
||||
(by date/team/org/user/model/api_key/model_group/provider)
|
||||
- spend
|
||||
- prompt_tokens
|
||||
- completion_tokens
|
||||
- total_tokens
|
||||
- api_requests
|
||||
- breakdown by team, organization, user, model, api_key, model_group, provider
|
||||
"""
|
||||
from litellm.proxy.proxy_server import prisma_client
|
||||
|
||||
if prisma_client is None:
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail={"error": CommonProxyErrors.db_not_connected_error.value},
|
||||
)
|
||||
|
||||
if start_date is None or end_date is None:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail={"error": "Please provide start_date and end_date"},
|
||||
)
|
||||
|
||||
try:
|
||||
# Build filter conditions
|
||||
where_conditions: Dict[str, Any] = {
|
||||
"date": {
|
||||
"gte": start_date,
|
||||
"lte": end_date,
|
||||
}
|
||||
}
|
||||
|
||||
if team_id:
|
||||
where_conditions["team_id"] = team_id
|
||||
if org_id:
|
||||
where_conditions["organization_id"] = org_id
|
||||
if model:
|
||||
where_conditions["model"] = model
|
||||
if api_key:
|
||||
where_conditions["api_key"] = api_key
|
||||
|
||||
# Get total count for pagination
|
||||
total_count = await prisma_client.db.litellm_dailyuserspend.count(
|
||||
where=where_conditions
|
||||
)
|
||||
|
||||
# Fetch paginated results
|
||||
daily_spend_data = await prisma_client.db.litellm_dailyuserspend.find_many(
|
||||
where=where_conditions,
|
||||
order=[
|
||||
{"date": "desc"},
|
||||
],
|
||||
skip=(page - 1) * page_size,
|
||||
take=page_size,
|
||||
)
|
||||
|
||||
# Process results
|
||||
results = []
|
||||
total_metrics = SpendMetrics()
|
||||
|
||||
# Group data by date and other dimensions
|
||||
|
||||
grouped_data: Dict[str, Dict[str, Any]] = {}
|
||||
for record in daily_spend_data:
|
||||
date_str = record.date
|
||||
if date_str not in grouped_data:
|
||||
grouped_data[date_str] = {
|
||||
"metrics": SpendMetrics(),
|
||||
"breakdown": BreakdownMetrics(),
|
||||
}
|
||||
|
||||
# Update metrics
|
||||
grouped_data[date_str]["metrics"] = update_metrics(
|
||||
grouped_data[date_str]["metrics"], record
|
||||
)
|
||||
# Update breakdowns
|
||||
grouped_data[date_str]["breakdown"] = update_breakdown_metrics(
|
||||
grouped_data[date_str]["breakdown"], record
|
||||
)
|
||||
|
||||
# Update total metrics
|
||||
total_metrics.spend += record.spend
|
||||
total_metrics.prompt_tokens += record.prompt_tokens
|
||||
total_metrics.completion_tokens += record.completion_tokens
|
||||
total_metrics.total_tokens += (
|
||||
record.prompt_tokens + record.completion_tokens
|
||||
)
|
||||
total_metrics.api_requests += 1
|
||||
|
||||
# Convert grouped data to response format
|
||||
for date_str, data in grouped_data.items():
|
||||
results.append(
|
||||
DailySpendData(
|
||||
date=datetime.strptime(date_str, "%Y-%m-%d").date(),
|
||||
metrics=data["metrics"],
|
||||
breakdown=data["breakdown"],
|
||||
)
|
||||
)
|
||||
|
||||
# Sort results by date
|
||||
results.sort(key=lambda x: x.date, reverse=True)
|
||||
|
||||
return SpendAnalyticsPaginatedResponse(
|
||||
results=results,
|
||||
metadata=DailySpendMetadata(
|
||||
total_spend=total_metrics.spend,
|
||||
total_prompt_tokens=total_metrics.prompt_tokens,
|
||||
total_completion_tokens=total_metrics.completion_tokens,
|
||||
total_api_requests=total_metrics.api_requests,
|
||||
page=page,
|
||||
total_pages=-(-total_count // page_size), # Ceiling division
|
||||
has_more=(page * page_size) < total_count,
|
||||
),
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
verbose_proxy_logger.exception(
|
||||
"/spend/daily/analytics: Exception occured - {}".format(str(e))
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"error": f"Failed to fetch analytics: {str(e)}"},
|
||||
)
|
||||
|
|
|
@ -509,9 +509,6 @@ async def proxy_startup_event(app: FastAPI):
|
|||
if isinstance(worker_config, dict):
|
||||
await initialize(**worker_config)
|
||||
|
||||
### LOAD MASTER KEY ###
|
||||
# check if master key set in environment - load from there
|
||||
master_key = get_secret("LITELLM_MASTER_KEY", None) # type: ignore
|
||||
# check if DATABASE_URL in environment - load from there
|
||||
if prisma_client is None:
|
||||
_db_url: Optional[str] = get_secret("DATABASE_URL", None) # type: ignore
|
||||
|
@ -1974,6 +1971,7 @@ class ProxyConfig:
|
|||
|
||||
if master_key and master_key.startswith("os.environ/"):
|
||||
master_key = get_secret(master_key) # type: ignore
|
||||
|
||||
if not isinstance(master_key, str):
|
||||
raise Exception(
|
||||
"Master key must be a string. Current type - {}".format(
|
||||
|
|
|
@ -314,19 +314,19 @@ model LiteLLM_AuditLog {
|
|||
updated_values Json? // value of the row after change
|
||||
}
|
||||
|
||||
|
||||
// Track daily user spend metrics per model and key
|
||||
model LiteLLM_DailyUserSpend {
|
||||
id String @id @default(uuid())
|
||||
user_id String
|
||||
date String
|
||||
api_key String // Hashed API Token
|
||||
model String // The specific model used
|
||||
model_group String? // public model_name / model_group
|
||||
custom_llm_provider String? // The LLM provider (e.g., "openai", "anthropic")
|
||||
api_key String
|
||||
model String
|
||||
model_group String?
|
||||
custom_llm_provider String?
|
||||
prompt_tokens Int @default(0)
|
||||
completion_tokens Int @default(0)
|
||||
spend Float @default(0.0)
|
||||
api_requests Int @default(0)
|
||||
created_at DateTime @default(now())
|
||||
updated_at DateTime @updatedAt
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ import collections
|
|||
import os
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from functools import lru_cache
|
||||
from typing import TYPE_CHECKING, Any, List, Optional
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional
|
||||
|
||||
import fastapi
|
||||
from fastapi import APIRouter, Depends, HTTPException, status
|
||||
|
|
|
@ -1179,6 +1179,7 @@ class PrismaClient:
|
|||
daily_transaction["spend"] += payload["spend"]
|
||||
daily_transaction["prompt_tokens"] += payload["prompt_tokens"]
|
||||
daily_transaction["completion_tokens"] += payload["completion_tokens"]
|
||||
daily_transaction["api_requests"] += 1
|
||||
else:
|
||||
daily_transaction = DailyUserSpendTransaction(
|
||||
user_id=payload["user"],
|
||||
|
@ -1190,6 +1191,7 @@ class PrismaClient:
|
|||
prompt_tokens=payload["prompt_tokens"],
|
||||
completion_tokens=payload["completion_tokens"],
|
||||
spend=payload["spend"],
|
||||
api_requests=1,
|
||||
)
|
||||
|
||||
self.daily_user_spend_transactions[daily_transaction_key] = (
|
||||
|
@ -2598,6 +2600,7 @@ class ProxyUpdateSpend:
|
|||
"completion_tokens"
|
||||
],
|
||||
"spend": transaction["spend"],
|
||||
"api_requests": transaction["api_requests"],
|
||||
},
|
||||
"update": {
|
||||
"prompt_tokens": {
|
||||
|
@ -2609,6 +2612,9 @@ class ProxyUpdateSpend:
|
|||
]
|
||||
},
|
||||
"spend": {"increment": transaction["spend"]},
|
||||
"api_requests": {
|
||||
"increment": transaction["api_requests"]
|
||||
},
|
||||
},
|
||||
},
|
||||
)
|
||||
|
|
|
@ -5744,13 +5744,15 @@ def trim_messages(
|
|||
return messages
|
||||
|
||||
|
||||
def get_valid_models(check_provider_endpoint: bool = False) -> List[str]:
|
||||
def get_valid_models(
|
||||
check_provider_endpoint: bool = False, custom_llm_provider: Optional[str] = None
|
||||
) -> List[str]:
|
||||
"""
|
||||
Returns a list of valid LLMs based on the set environment variables
|
||||
|
||||
Args:
|
||||
check_provider_endpoint: If True, will check the provider's endpoint for valid models.
|
||||
|
||||
custom_llm_provider: If provided, will only check the provider's endpoint for valid models.
|
||||
Returns:
|
||||
A list of valid LLMs
|
||||
"""
|
||||
|
@ -5762,6 +5764,9 @@ def get_valid_models(check_provider_endpoint: bool = False) -> List[str]:
|
|||
valid_models = []
|
||||
|
||||
for provider in litellm.provider_list:
|
||||
if custom_llm_provider and provider != custom_llm_provider:
|
||||
continue
|
||||
|
||||
# edge case litellm has together_ai as a provider, it should be togetherai
|
||||
env_provider_1 = provider.replace("_", "")
|
||||
env_provider_2 = provider
|
||||
|
@ -5783,10 +5788,17 @@ def get_valid_models(check_provider_endpoint: bool = False) -> List[str]:
|
|||
provider=LlmProviders(provider),
|
||||
)
|
||||
|
||||
if custom_llm_provider and provider != custom_llm_provider:
|
||||
continue
|
||||
|
||||
if provider == "azure":
|
||||
valid_models.append("Azure-LLM")
|
||||
elif provider_config is not None and check_provider_endpoint:
|
||||
valid_models.extend(provider_config.get_models())
|
||||
try:
|
||||
models = provider_config.get_models()
|
||||
valid_models.extend(models)
|
||||
except Exception as e:
|
||||
verbose_logger.debug(f"Error getting valid models: {e}")
|
||||
else:
|
||||
models_for_provider = litellm.models_by_provider.get(provider, [])
|
||||
valid_models.extend(models_for_provider)
|
||||
|
@ -6400,10 +6412,16 @@ class ProviderConfigManager:
|
|||
return litellm.FireworksAIConfig()
|
||||
elif LlmProviders.OPENAI == provider:
|
||||
return litellm.OpenAIGPTConfig()
|
||||
elif LlmProviders.GEMINI == provider:
|
||||
return litellm.GeminiModelInfo()
|
||||
elif LlmProviders.LITELLM_PROXY == provider:
|
||||
return litellm.LiteLLMProxyChatConfig()
|
||||
elif LlmProviders.TOPAZ == provider:
|
||||
return litellm.TopazModelInfo()
|
||||
elif LlmProviders.ANTHROPIC == provider:
|
||||
return litellm.AnthropicModelInfo()
|
||||
elif LlmProviders.XAI == provider:
|
||||
return litellm.XAIModelInfo()
|
||||
|
||||
return None
|
||||
|
||||
|
|
|
@ -326,6 +326,7 @@ model LiteLLM_DailyUserSpend {
|
|||
prompt_tokens Int @default(0)
|
||||
completion_tokens Int @default(0)
|
||||
spend Float @default(0.0)
|
||||
api_requests Int @default(0)
|
||||
created_at DateTime @default(now())
|
||||
updated_at DateTime @updatedAt
|
||||
|
||||
|
|
|
@ -303,6 +303,24 @@ def test_aget_valid_models():
|
|||
os.environ = old_environ
|
||||
|
||||
|
||||
@pytest.mark.parametrize("custom_llm_provider", ["gemini", "anthropic", "xai"])
|
||||
def test_get_valid_models_with_custom_llm_provider(custom_llm_provider):
|
||||
from litellm.utils import ProviderConfigManager
|
||||
from litellm.types.utils import LlmProviders
|
||||
|
||||
provider_config = ProviderConfigManager.get_provider_model_info(
|
||||
model=None,
|
||||
provider=LlmProviders(custom_llm_provider),
|
||||
)
|
||||
assert provider_config is not None
|
||||
valid_models = get_valid_models(
|
||||
check_provider_endpoint=True, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
print(valid_models)
|
||||
assert len(valid_models) > 0
|
||||
assert provider_config.get_models() == valid_models
|
||||
|
||||
|
||||
# test_get_valid_models()
|
||||
|
||||
|
||||
|
|
|
@ -3883,8 +3883,11 @@ async def test_get_paginated_teams(prisma_client):
|
|||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.flaky(reruns=3)
|
||||
@pytest.mark.flaky(retries=3, delay=1)
|
||||
@pytest.mark.parametrize("entity_type", ["key", "user", "team"])
|
||||
@pytest.mark.skip(
|
||||
reason="Skipping reset budget job test. Fails on ci/cd due to db timeout errors. Need to replace with mock db."
|
||||
)
|
||||
async def test_reset_budget_job(prisma_client, entity_type):
|
||||
"""
|
||||
Test that the ResetBudgetJob correctly resets budgets for keys, users, and teams.
|
||||
|
|
|
@ -28,6 +28,7 @@ class MockPrismaClient:
|
|||
self.team_list_transactons = {}
|
||||
self.team_member_list_transactons = {}
|
||||
self.org_list_transactons = {}
|
||||
self.daily_user_spend_transactions = {}
|
||||
|
||||
def jsonify_object(self, obj):
|
||||
return obj
|
||||
|
|
|
@ -160,7 +160,7 @@ async def test_end_user_new():
|
|||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_end_user_specific_region():
|
||||
async def test_aaaend_user_specific_region():
|
||||
"""
|
||||
- Specify region user can make calls in
|
||||
- Make a generic call
|
||||
|
|
|
@ -20,6 +20,7 @@ import PassThroughSettings from "@/components/pass_through_settings";
|
|||
import BudgetPanel from "@/components/budgets/budget_panel";
|
||||
import SpendLogsTable from "@/components/view_logs";
|
||||
import ModelHub from "@/components/model_hub";
|
||||
import NewUsagePage from "@/components/new_usage";
|
||||
import APIRef from "@/components/api_ref";
|
||||
import ChatUI from "@/components/chat_ui";
|
||||
import Sidebar from "@/components/leftnav";
|
||||
|
@ -346,7 +347,14 @@ export default function CreateKeyPage() {
|
|||
accessToken={accessToken}
|
||||
allTeams={teams as Team[] ?? []}
|
||||
/>
|
||||
) : (
|
||||
) : page == "new_usage" ? (
|
||||
<NewUsagePage
|
||||
userID={userID}
|
||||
userRole={userRole}
|
||||
accessToken={accessToken}
|
||||
/>
|
||||
) :
|
||||
(
|
||||
<Usage
|
||||
userID={userID}
|
||||
userRole={userRole}
|
||||
|
|
|
@ -68,6 +68,7 @@ const menuItems: MenuItem[] = [
|
|||
{ key: "9", page: "caching", label: "Caching", icon: <DatabaseOutlined />, roles: all_admin_roles },
|
||||
{ key: "10", page: "budgets", label: "Budgets", icon: <BankOutlined />, roles: all_admin_roles },
|
||||
{ key: "11", page: "guardrails", label: "Guardrails", icon: <SafetyOutlined />, roles: all_admin_roles },
|
||||
{ key: "12", page: "new_usage", label: "New Usage", icon: <BarChartOutlined />, roles: all_admin_roles },
|
||||
]
|
||||
},
|
||||
{
|
||||
|
|
|
@ -1070,6 +1070,42 @@ export const organizationDeleteCall = async (
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
export const userDailyActivityCall = async (accessToken: String, startTime: Date, endTime: Date) => {
|
||||
/**
|
||||
* Get daily user activity on proxy
|
||||
*/
|
||||
try {
|
||||
let url = proxyBaseUrl ? `${proxyBaseUrl}/user/daily/activity` : `/user/daily/activity`;
|
||||
const queryParams = new URLSearchParams();
|
||||
queryParams.append('start_date', startTime.toISOString());
|
||||
queryParams.append('end_date', endTime.toISOString());
|
||||
const queryString = queryParams.toString();
|
||||
if (queryString) {
|
||||
url += `?${queryString}`;
|
||||
}
|
||||
|
||||
const response = await fetch(url, {
|
||||
method: "GET",
|
||||
headers: {
|
||||
[globalLitellmHeaderName]: `Bearer ${accessToken}`,
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
const errorData = await response.text();
|
||||
handleError(errorData);
|
||||
throw new Error("Network response was not ok");
|
||||
}
|
||||
|
||||
const data = await response.json();
|
||||
return data;
|
||||
} catch (error) {
|
||||
console.error("Failed to create key:", error);
|
||||
throw error;
|
||||
}
|
||||
};
|
||||
export const getTotalSpendCall = async (accessToken: String) => {
|
||||
/**
|
||||
* Get all models on proxy
|
||||
|
|
471
ui/litellm-dashboard/src/components/new_usage.tsx
Normal file
471
ui/litellm-dashboard/src/components/new_usage.tsx
Normal file
|
@ -0,0 +1,471 @@
|
|||
/**
|
||||
* New Usage Page
|
||||
*
|
||||
* Uses the new `/user/daily/activity` endpoint to get daily activity data for a user.
|
||||
*
|
||||
* Works at 1m+ spend logs, by querying an aggregate table instead.
|
||||
*/
|
||||
|
||||
import React, { useState, useEffect } from "react";
|
||||
import {
|
||||
BarChart, Card, Title, Text,
|
||||
Grid, Col, TabGroup, TabList, Tab,
|
||||
TabPanel, TabPanels, DonutChart,
|
||||
Table, TableHead, TableRow,
|
||||
TableHeaderCell, TableBody, TableCell,
|
||||
Subtitle
|
||||
} from "@tremor/react";
|
||||
import { AreaChart } from "@tremor/react";
|
||||
|
||||
import { userDailyActivityCall } from "./networking";
|
||||
import ViewUserSpend from "./view_user_spend";
|
||||
import TopKeyView from "./top_key_view";
|
||||
|
||||
interface NewUsagePageProps {
|
||||
accessToken: string | null;
|
||||
userRole: string | null;
|
||||
userID: string | null;
|
||||
}
|
||||
|
||||
interface SpendMetrics {
|
||||
spend: number;
|
||||
prompt_tokens: number;
|
||||
completion_tokens: number;
|
||||
total_tokens: number;
|
||||
api_requests: number;
|
||||
}
|
||||
|
||||
interface BreakdownMetrics {
|
||||
models: { [key: string]: SpendMetrics };
|
||||
providers: { [key: string]: SpendMetrics };
|
||||
api_keys: { [key: string]: SpendMetrics };
|
||||
}
|
||||
|
||||
interface DailyData {
|
||||
date: string;
|
||||
metrics: SpendMetrics;
|
||||
breakdown: BreakdownMetrics;
|
||||
}
|
||||
|
||||
const NewUsagePage: React.FC<NewUsagePageProps> = ({
|
||||
accessToken,
|
||||
userRole,
|
||||
userID,
|
||||
}) => {
|
||||
const [userSpendData, setUserSpendData] = useState<{
|
||||
results: DailyData[];
|
||||
metadata: any;
|
||||
}>({ results: [], metadata: {} });
|
||||
|
||||
// Derived states from userSpendData
|
||||
const totalSpend = userSpendData.metadata?.total_spend || 0;
|
||||
|
||||
// Calculate top models from the breakdown data
|
||||
const getTopModels = () => {
|
||||
const modelSpend: { [key: string]: SpendMetrics } = {};
|
||||
userSpendData.results.forEach(day => {
|
||||
Object.entries(day.breakdown.models || {}).forEach(([model, metrics]) => {
|
||||
if (!modelSpend[model]) {
|
||||
modelSpend[model] = {
|
||||
spend: 0,
|
||||
prompt_tokens: 0,
|
||||
completion_tokens: 0,
|
||||
total_tokens: 0,
|
||||
api_requests: 0
|
||||
};
|
||||
}
|
||||
modelSpend[model].spend += metrics.spend;
|
||||
modelSpend[model].prompt_tokens += metrics.prompt_tokens;
|
||||
modelSpend[model].completion_tokens += metrics.completion_tokens;
|
||||
modelSpend[model].total_tokens += metrics.total_tokens;
|
||||
modelSpend[model].api_requests += metrics.api_requests;
|
||||
});
|
||||
});
|
||||
|
||||
return Object.entries(modelSpend)
|
||||
.map(([model, metrics]) => ({
|
||||
key: model,
|
||||
spend: metrics.spend,
|
||||
requests: metrics.api_requests,
|
||||
tokens: metrics.total_tokens
|
||||
}))
|
||||
.sort((a, b) => b.spend - a.spend)
|
||||
.slice(0, 5);
|
||||
};
|
||||
|
||||
// Calculate provider spend from the breakdown data
|
||||
const getProviderSpend = () => {
|
||||
const providerSpend: { [key: string]: SpendMetrics } = {};
|
||||
userSpendData.results.forEach(day => {
|
||||
Object.entries(day.breakdown.providers || {}).forEach(([provider, metrics]) => {
|
||||
if (!providerSpend[provider]) {
|
||||
providerSpend[provider] = {
|
||||
spend: 0,
|
||||
prompt_tokens: 0,
|
||||
completion_tokens: 0,
|
||||
total_tokens: 0,
|
||||
api_requests: 0
|
||||
};
|
||||
}
|
||||
providerSpend[provider].spend += metrics.spend;
|
||||
providerSpend[provider].prompt_tokens += metrics.prompt_tokens;
|
||||
providerSpend[provider].completion_tokens += metrics.completion_tokens;
|
||||
providerSpend[provider].total_tokens += metrics.total_tokens;
|
||||
providerSpend[provider].api_requests += metrics.api_requests;
|
||||
});
|
||||
});
|
||||
|
||||
return Object.entries(providerSpend)
|
||||
.map(([provider, metrics]) => ({
|
||||
provider,
|
||||
spend: metrics.spend,
|
||||
requests: metrics.api_requests,
|
||||
tokens: metrics.total_tokens
|
||||
}));
|
||||
};
|
||||
|
||||
// Calculate top API keys from the breakdown data
|
||||
const getTopKeys = () => {
|
||||
const keySpend: { [key: string]: SpendMetrics } = {};
|
||||
userSpendData.results.forEach(day => {
|
||||
Object.entries(day.breakdown.api_keys || {}).forEach(([key, metrics]) => {
|
||||
if (!keySpend[key]) {
|
||||
keySpend[key] = {
|
||||
spend: 0,
|
||||
prompt_tokens: 0,
|
||||
completion_tokens: 0,
|
||||
total_tokens: 0,
|
||||
api_requests: 0
|
||||
};
|
||||
}
|
||||
keySpend[key].spend += metrics.spend;
|
||||
keySpend[key].prompt_tokens += metrics.prompt_tokens;
|
||||
keySpend[key].completion_tokens += metrics.completion_tokens;
|
||||
keySpend[key].total_tokens += metrics.total_tokens;
|
||||
keySpend[key].api_requests += metrics.api_requests;
|
||||
});
|
||||
});
|
||||
|
||||
return Object.entries(keySpend)
|
||||
.map(([api_key, metrics]) => ({
|
||||
api_key,
|
||||
key_alias: api_key.substring(0, 10), // Using truncated key as alias
|
||||
spend: metrics.spend,
|
||||
}))
|
||||
.sort((a, b) => b.spend - a.spend)
|
||||
.slice(0, 5);
|
||||
};
|
||||
|
||||
const fetchUserSpendData = async () => {
|
||||
if (!accessToken) return;
|
||||
const startTime = new Date(Date.now() - 28 * 24 * 60 * 60 * 1000);
|
||||
const endTime = new Date();
|
||||
const data = await userDailyActivityCall(accessToken, startTime, endTime);
|
||||
setUserSpendData(data);
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
fetchUserSpendData();
|
||||
}, [accessToken]);
|
||||
|
||||
return (
|
||||
<div style={{ width: "100%" }} className="p-8">
|
||||
<Text>Experimental Usage page, using new `/user/daily/activity` endpoint.</Text>
|
||||
<TabGroup>
|
||||
<TabList variant="solid" className="mt-1">
|
||||
<Tab>Cost</Tab>
|
||||
<Tab>Activity</Tab>
|
||||
</TabList>
|
||||
<TabPanels>
|
||||
{/* Cost Panel */}
|
||||
<TabPanel>
|
||||
<Grid numItems={2} className="gap-2 h-[100vh] w-full">
|
||||
{/* Total Spend Card */}
|
||||
<Col numColSpan={2}>
|
||||
<Text className="text-tremor-default text-tremor-content dark:text-dark-tremor-content mb-2 mt-2 text-lg">
|
||||
Project Spend {new Date().toLocaleString('default', { month: 'long' })} 1 - {new Date(new Date().getFullYear(), new Date().getMonth() + 1, 0).getDate()}
|
||||
</Text>
|
||||
<ViewUserSpend
|
||||
userID={userID}
|
||||
userRole={userRole}
|
||||
accessToken={accessToken}
|
||||
userSpend={totalSpend}
|
||||
selectedTeam={null}
|
||||
userMaxBudget={null}
|
||||
/>
|
||||
</Col>
|
||||
|
||||
{/* Daily Spend Chart */}
|
||||
<Col numColSpan={2}>
|
||||
<Card>
|
||||
<Title>Daily Spend</Title>
|
||||
<BarChart
|
||||
data={userSpendData.results}
|
||||
index="date"
|
||||
categories={["metrics.spend"]}
|
||||
colors={["cyan"]}
|
||||
valueFormatter={(value) => `$${value.toFixed(2)}`}
|
||||
yAxisWidth={100}
|
||||
showLegend={false}
|
||||
customTooltip={({ payload, active }) => {
|
||||
if (!active || !payload?.[0]) return null;
|
||||
const data = payload[0].payload;
|
||||
return (
|
||||
<div className="bg-white p-4 shadow-lg rounded-lg border">
|
||||
<p className="font-bold">{data.date}</p>
|
||||
<p className="text-cyan-500">Spend: ${data.metrics.spend.toFixed(2)}</p>
|
||||
<p className="text-gray-600">Requests: {data.metrics.api_requests}</p>
|
||||
<p className="text-gray-600">Tokens: {data.metrics.total_tokens}</p>
|
||||
</div>
|
||||
);
|
||||
}}
|
||||
/>
|
||||
</Card>
|
||||
</Col>
|
||||
|
||||
{/* Top API Keys */}
|
||||
<Col numColSpan={1}>
|
||||
<Card className="h-full">
|
||||
<Title>Top API Keys</Title>
|
||||
<TopKeyView
|
||||
topKeys={getTopKeys()}
|
||||
accessToken={accessToken}
|
||||
userID={userID}
|
||||
userRole={userRole}
|
||||
teams={null}
|
||||
/>
|
||||
</Card>
|
||||
</Col>
|
||||
|
||||
{/* Top Models */}
|
||||
<Col numColSpan={1}>
|
||||
<Card className="h-full">
|
||||
<Title>Top Models</Title>
|
||||
<BarChart
|
||||
className="mt-4 h-40"
|
||||
data={getTopModels()}
|
||||
index="key"
|
||||
categories={["spend"]}
|
||||
colors={["cyan"]}
|
||||
valueFormatter={(value) => `$${value.toFixed(2)}`}
|
||||
layout="vertical"
|
||||
yAxisWidth={200}
|
||||
showLegend={false}
|
||||
customTooltip={({ payload, active }) => {
|
||||
if (!active || !payload?.[0]) return null;
|
||||
const data = payload[0].payload;
|
||||
return (
|
||||
<div className="bg-white p-4 shadow-lg rounded-lg border">
|
||||
<p className="font-bold">{data.key}</p>
|
||||
<p className="text-cyan-500">Spend: ${data.spend.toFixed(2)}</p>
|
||||
<p className="text-gray-600">Requests: {data.requests.toLocaleString()}</p>
|
||||
<p className="text-gray-600">Tokens: {data.tokens.toLocaleString()}</p>
|
||||
</div>
|
||||
);
|
||||
}}
|
||||
/>
|
||||
</Card>
|
||||
</Col>
|
||||
|
||||
{/* Spend by Provider */}
|
||||
<Col numColSpan={2}>
|
||||
<Card className="h-full">
|
||||
<Title>Spend by Provider</Title>
|
||||
<Grid numItems={2}>
|
||||
<Col numColSpan={1}>
|
||||
<DonutChart
|
||||
className="mt-4 h-40"
|
||||
data={getProviderSpend()}
|
||||
index="provider"
|
||||
category="spend"
|
||||
valueFormatter={(value) => `$${value.toFixed(2)}`}
|
||||
colors={["cyan"]}
|
||||
/>
|
||||
</Col>
|
||||
<Col numColSpan={1}>
|
||||
<Table>
|
||||
<TableHead>
|
||||
<TableRow>
|
||||
<TableHeaderCell>Provider</TableHeaderCell>
|
||||
<TableHeaderCell>Spend</TableHeaderCell>
|
||||
<TableHeaderCell>Requests</TableHeaderCell>
|
||||
<TableHeaderCell>Tokens</TableHeaderCell>
|
||||
</TableRow>
|
||||
</TableHead>
|
||||
<TableBody>
|
||||
{getProviderSpend().map((provider) => (
|
||||
<TableRow key={provider.provider}>
|
||||
<TableCell>{provider.provider}</TableCell>
|
||||
<TableCell>
|
||||
${provider.spend < 0.00001
|
||||
? "less than 0.00"
|
||||
: provider.spend.toFixed(2)}
|
||||
</TableCell>
|
||||
<TableCell>{provider.requests.toLocaleString()}</TableCell>
|
||||
<TableCell>{provider.tokens.toLocaleString()}</TableCell>
|
||||
</TableRow>
|
||||
))}
|
||||
</TableBody>
|
||||
</Table>
|
||||
</Col>
|
||||
</Grid>
|
||||
</Card>
|
||||
</Col>
|
||||
|
||||
{/* Usage Metrics */}
|
||||
<Col numColSpan={2}>
|
||||
<Card>
|
||||
<Title>Usage Metrics</Title>
|
||||
<Grid numItems={3} className="gap-4 mt-4">
|
||||
<Card>
|
||||
<Title>Total Requests</Title>
|
||||
<Text className="text-2xl font-bold mt-2">
|
||||
{userSpendData.metadata?.total_api_requests?.toLocaleString() || 0}
|
||||
</Text>
|
||||
</Card>
|
||||
<Card>
|
||||
<Title>Total Tokens</Title>
|
||||
<Text className="text-2xl font-bold mt-2">
|
||||
{userSpendData.metadata?.total_tokens?.toLocaleString() || 0}
|
||||
</Text>
|
||||
</Card>
|
||||
<Card>
|
||||
<Title>Average Cost per Request</Title>
|
||||
<Text className="text-2xl font-bold mt-2">
|
||||
${((totalSpend || 0) / (userSpendData.metadata?.total_api_requests || 1)).toFixed(4)}
|
||||
</Text>
|
||||
</Card>
|
||||
</Grid>
|
||||
</Card>
|
||||
</Col>
|
||||
</Grid>
|
||||
</TabPanel>
|
||||
|
||||
{/* Activity Panel */}
|
||||
<TabPanel>
|
||||
<Grid numItems={1} className="gap-2 h-[75vh] w-full">
|
||||
<Card>
|
||||
<Title>All Up</Title>
|
||||
<Grid numItems={2}>
|
||||
<Col>
|
||||
<Subtitle style={{ fontSize: "15px", fontWeight: "normal", color: "#535452"}}>
|
||||
API Requests {valueFormatterNumbers(userSpendData.metadata?.total_api_requests || 0)}
|
||||
</Subtitle>
|
||||
<AreaChart
|
||||
className="h-40"
|
||||
data={[...userSpendData.results].reverse()}
|
||||
valueFormatter={valueFormatterNumbers}
|
||||
index="date"
|
||||
colors={['cyan']}
|
||||
categories={['metrics.api_requests']}
|
||||
/>
|
||||
</Col>
|
||||
<Col>
|
||||
<Subtitle style={{ fontSize: "15px", fontWeight: "normal", color: "#535452"}}>
|
||||
Tokens {valueFormatterNumbers(userSpendData.metadata?.total_tokens || 0)}
|
||||
</Subtitle>
|
||||
<BarChart
|
||||
className="h-40"
|
||||
data={[...userSpendData.results].reverse()}
|
||||
valueFormatter={valueFormatterNumbers}
|
||||
index="date"
|
||||
colors={['cyan']}
|
||||
categories={['metrics.total_tokens']}
|
||||
/>
|
||||
</Col>
|
||||
</Grid>
|
||||
</Card>
|
||||
|
||||
{/* Per Model Activity */}
|
||||
{Object.entries(getModelActivityData(userSpendData)).map(([model, data], index) => (
|
||||
<Card key={index}>
|
||||
<Title>{model}</Title>
|
||||
<Grid numItems={2}>
|
||||
<Col>
|
||||
<Subtitle style={{ fontSize: "15px", fontWeight: "normal", color: "#535452"}}>
|
||||
API Requests {valueFormatterNumbers(data.total_requests)}
|
||||
</Subtitle>
|
||||
<AreaChart
|
||||
className="h-40"
|
||||
data={[...data.daily_data].reverse()}
|
||||
index="date"
|
||||
colors={['cyan']}
|
||||
categories={['api_requests']}
|
||||
valueFormatter={valueFormatterNumbers}
|
||||
/>
|
||||
</Col>
|
||||
<Col>
|
||||
<Subtitle style={{ fontSize: "15px", fontWeight: "normal", color: "#535452"}}>
|
||||
Tokens {valueFormatterNumbers(data.total_tokens)}
|
||||
</Subtitle>
|
||||
<BarChart
|
||||
className="h-40"
|
||||
data={data.daily_data}
|
||||
index="date"
|
||||
colors={['cyan']}
|
||||
categories={['total_tokens']}
|
||||
valueFormatter={valueFormatterNumbers}
|
||||
/>
|
||||
</Col>
|
||||
</Grid>
|
||||
</Card>
|
||||
))}
|
||||
</Grid>
|
||||
</TabPanel>
|
||||
</TabPanels>
|
||||
</TabGroup>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
// Add this helper function to process model-specific activity data
|
||||
const getModelActivityData = (userSpendData: {
|
||||
results: DailyData[];
|
||||
metadata: any;
|
||||
}) => {
|
||||
const modelData: {
|
||||
[key: string]: {
|
||||
total_requests: number;
|
||||
total_tokens: number;
|
||||
daily_data: Array<{
|
||||
date: string;
|
||||
api_requests: number;
|
||||
total_tokens: number;
|
||||
}>;
|
||||
};
|
||||
} = {};
|
||||
|
||||
userSpendData.results.forEach((day: DailyData) => {
|
||||
Object.entries(day.breakdown.models || {}).forEach(([model, metrics]) => {
|
||||
if (!modelData[model]) {
|
||||
modelData[model] = {
|
||||
total_requests: 0,
|
||||
total_tokens: 0,
|
||||
daily_data: []
|
||||
};
|
||||
}
|
||||
|
||||
modelData[model].total_requests += metrics.api_requests;
|
||||
modelData[model].total_tokens += metrics.total_tokens;
|
||||
modelData[model].daily_data.push({
|
||||
date: day.date,
|
||||
api_requests: metrics.api_requests,
|
||||
total_tokens: metrics.total_tokens
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
return modelData;
|
||||
};
|
||||
|
||||
// Add this helper function for number formatting
|
||||
function valueFormatterNumbers(number: number) {
|
||||
const formatter = new Intl.NumberFormat('en-US', {
|
||||
maximumFractionDigits: 0,
|
||||
notation: 'compact',
|
||||
compactDisplay: 'short',
|
||||
});
|
||||
return formatter.format(number);
|
||||
}
|
||||
|
||||
export default NewUsagePage;
|
|
@ -1035,4 +1035,4 @@ const UsagePage: React.FC<UsagePageProps> = ({
|
|||
);
|
||||
};
|
||||
|
||||
export default UsagePage;
|
||||
export default UsagePage;
|
Loading…
Add table
Add a link
Reference in a new issue