mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
fix(main.py): simplify to just use /batchEmbedContent
This commit is contained in:
parent
947801d3ac
commit
7a9f1798ff
6 changed files with 28 additions and 260 deletions
|
@ -26,7 +26,7 @@ class GoogleBatchEmbeddings(VertexLLM):
|
||||||
def batch_embeddings(
|
def batch_embeddings(
|
||||||
self,
|
self,
|
||||||
model: str,
|
model: str,
|
||||||
input: List[str],
|
input: EmbeddingInput,
|
||||||
print_verbose,
|
print_verbose,
|
||||||
model_response: EmbeddingResponse,
|
model_response: EmbeddingResponse,
|
||||||
custom_llm_provider: Literal["gemini", "vertex_ai"],
|
custom_llm_provider: Literal["gemini", "vertex_ai"],
|
||||||
|
|
|
@ -22,20 +22,28 @@ from ..common_utils import VertexAIError
|
||||||
|
|
||||||
|
|
||||||
def transform_openai_input_gemini_content(
|
def transform_openai_input_gemini_content(
|
||||||
input: List[str], model: str, optional_params: dict
|
input: EmbeddingInput, model: str, optional_params: dict
|
||||||
) -> VertexAIBatchEmbeddingsRequestBody:
|
) -> VertexAIBatchEmbeddingsRequestBody:
|
||||||
"""
|
"""
|
||||||
The content to embed. Only the parts.text fields will be counted.
|
The content to embed. Only the parts.text fields will be counted.
|
||||||
"""
|
"""
|
||||||
gemini_model_name = "models/{}".format(model)
|
gemini_model_name = "models/{}".format(model)
|
||||||
requests: List[EmbedContentRequest] = []
|
requests: List[EmbedContentRequest] = []
|
||||||
for i in input:
|
if isinstance(input, str):
|
||||||
request = EmbedContentRequest(
|
request = EmbedContentRequest(
|
||||||
model=gemini_model_name,
|
model=gemini_model_name,
|
||||||
content=ContentType(parts=[PartType(text=i)]),
|
content=ContentType(parts=[PartType(text=input)]),
|
||||||
**optional_params
|
**optional_params
|
||||||
)
|
)
|
||||||
requests.append(request)
|
requests.append(request)
|
||||||
|
else:
|
||||||
|
for i in input:
|
||||||
|
request = EmbedContentRequest(
|
||||||
|
model=gemini_model_name,
|
||||||
|
content=ContentType(parts=[PartType(text=i)]),
|
||||||
|
**optional_params
|
||||||
|
)
|
||||||
|
requests.append(request)
|
||||||
|
|
||||||
return VertexAIBatchEmbeddingsRequestBody(requests=requests)
|
return VertexAIBatchEmbeddingsRequestBody(requests=requests)
|
||||||
|
|
||||||
|
|
|
@ -1,170 +0,0 @@
|
||||||
"""
|
|
||||||
Google AI Studio /embedContent Embeddings Endpoint
|
|
||||||
"""
|
|
||||||
|
|
||||||
import json
|
|
||||||
from typing import Literal, Optional, Union
|
|
||||||
|
|
||||||
import httpx
|
|
||||||
|
|
||||||
from litellm import EmbeddingResponse
|
|
||||||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
||||||
from litellm.types.llms.openai import EmbeddingInput
|
|
||||||
from litellm.types.llms.vertex_ai import (
|
|
||||||
VertexAITextEmbeddingsRequestBody,
|
|
||||||
VertexAITextEmbeddingsResponseObject,
|
|
||||||
)
|
|
||||||
|
|
||||||
from ..gemini.vertex_and_google_ai_studio_gemini import VertexLLM
|
|
||||||
from .embed_content_transformation import (
|
|
||||||
process_response,
|
|
||||||
transform_openai_input_gemini_content,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class GoogleEmbeddings(VertexLLM):
|
|
||||||
def text_embeddings(
|
|
||||||
self,
|
|
||||||
model: str,
|
|
||||||
input: str,
|
|
||||||
print_verbose,
|
|
||||||
model_response: EmbeddingResponse,
|
|
||||||
custom_llm_provider: Literal["gemini", "vertex_ai"],
|
|
||||||
optional_params: dict,
|
|
||||||
api_key: Optional[str] = None,
|
|
||||||
api_base: Optional[str] = None,
|
|
||||||
logging_obj=None,
|
|
||||||
encoding=None,
|
|
||||||
vertex_project=None,
|
|
||||||
vertex_location=None,
|
|
||||||
vertex_credentials=None,
|
|
||||||
aembedding=False,
|
|
||||||
timeout=300,
|
|
||||||
client=None,
|
|
||||||
) -> EmbeddingResponse:
|
|
||||||
|
|
||||||
auth_header, url = self._get_token_and_url(
|
|
||||||
model=model,
|
|
||||||
gemini_api_key=api_key,
|
|
||||||
vertex_project=vertex_project,
|
|
||||||
vertex_location=vertex_location,
|
|
||||||
vertex_credentials=vertex_credentials,
|
|
||||||
stream=None,
|
|
||||||
custom_llm_provider=custom_llm_provider,
|
|
||||||
api_base=api_base,
|
|
||||||
should_use_v1beta1_features=False,
|
|
||||||
mode="embedding",
|
|
||||||
)
|
|
||||||
|
|
||||||
if client is None:
|
|
||||||
_params = {}
|
|
||||||
if timeout is not None:
|
|
||||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
|
||||||
_httpx_timeout = httpx.Timeout(timeout)
|
|
||||||
_params["timeout"] = _httpx_timeout
|
|
||||||
else:
|
|
||||||
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
|
|
||||||
|
|
||||||
sync_handler: HTTPHandler = HTTPHandler(**_params) # type: ignore
|
|
||||||
else:
|
|
||||||
sync_handler = client # type: ignore
|
|
||||||
|
|
||||||
optional_params = optional_params or {}
|
|
||||||
|
|
||||||
### TRANSFORMATION ###
|
|
||||||
content = transform_openai_input_gemini_content(input=input)
|
|
||||||
|
|
||||||
request_data: VertexAITextEmbeddingsRequestBody = {
|
|
||||||
"content": content,
|
|
||||||
**optional_params,
|
|
||||||
}
|
|
||||||
|
|
||||||
headers = {
|
|
||||||
"Content-Type": "application/json; charset=utf-8",
|
|
||||||
}
|
|
||||||
|
|
||||||
## LOGGING
|
|
||||||
logging_obj.pre_call(
|
|
||||||
input=input,
|
|
||||||
api_key="",
|
|
||||||
additional_args={
|
|
||||||
"complete_input_dict": request_data,
|
|
||||||
"api_base": url,
|
|
||||||
"headers": headers,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
if aembedding is True:
|
|
||||||
return self.async_text_embeddings( # type: ignore
|
|
||||||
model=model,
|
|
||||||
api_base=api_base,
|
|
||||||
url=url,
|
|
||||||
data=request_data,
|
|
||||||
model_response=model_response,
|
|
||||||
timeout=timeout,
|
|
||||||
headers=headers,
|
|
||||||
input=input,
|
|
||||||
)
|
|
||||||
|
|
||||||
response = sync_handler.post(
|
|
||||||
url=url,
|
|
||||||
headers=headers,
|
|
||||||
data=json.dumps(request_data),
|
|
||||||
)
|
|
||||||
|
|
||||||
if response.status_code != 200:
|
|
||||||
raise Exception(f"Error: {response.status_code} {response.text}")
|
|
||||||
|
|
||||||
_json_response = response.json()
|
|
||||||
_predictions = VertexAITextEmbeddingsResponseObject(**_json_response) # type: ignore
|
|
||||||
|
|
||||||
return process_response(
|
|
||||||
model=model,
|
|
||||||
model_response=model_response,
|
|
||||||
_predictions=_predictions,
|
|
||||||
input=input,
|
|
||||||
)
|
|
||||||
|
|
||||||
async def async_text_embeddings(
|
|
||||||
self,
|
|
||||||
model: str,
|
|
||||||
api_base: Optional[str],
|
|
||||||
url: str,
|
|
||||||
data: VertexAITextEmbeddingsRequestBody,
|
|
||||||
model_response: EmbeddingResponse,
|
|
||||||
input: EmbeddingInput,
|
|
||||||
timeout: Optional[Union[float, httpx.Timeout]],
|
|
||||||
headers={},
|
|
||||||
client: Optional[AsyncHTTPHandler] = None,
|
|
||||||
) -> EmbeddingResponse:
|
|
||||||
if client is None:
|
|
||||||
_params = {}
|
|
||||||
if timeout is not None:
|
|
||||||
if isinstance(timeout, float) or isinstance(timeout, int):
|
|
||||||
_httpx_timeout = httpx.Timeout(timeout)
|
|
||||||
_params["timeout"] = _httpx_timeout
|
|
||||||
else:
|
|
||||||
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
|
|
||||||
|
|
||||||
async_handler: AsyncHTTPHandler = AsyncHTTPHandler(**_params) # type: ignore
|
|
||||||
else:
|
|
||||||
async_handler = client # type: ignore
|
|
||||||
|
|
||||||
response = await async_handler.post(
|
|
||||||
url=url,
|
|
||||||
headers=headers,
|
|
||||||
data=json.dumps(data),
|
|
||||||
)
|
|
||||||
|
|
||||||
if response.status_code != 200:
|
|
||||||
raise Exception(f"Error: {response.status_code} {response.text}")
|
|
||||||
|
|
||||||
_json_response = response.json()
|
|
||||||
_predictions = VertexAITextEmbeddingsResponseObject(**_json_response) # type: ignore
|
|
||||||
|
|
||||||
return process_response(
|
|
||||||
model=model,
|
|
||||||
model_response=model_response,
|
|
||||||
_predictions=_predictions,
|
|
||||||
input=input,
|
|
||||||
)
|
|
|
@ -1,49 +0,0 @@
|
||||||
"""
|
|
||||||
Transformation logic from OpenAI /v1/embeddings format to Google AI Studio /embedContent format.
|
|
||||||
|
|
||||||
Why separate file? Make it easy to see how transformation works
|
|
||||||
"""
|
|
||||||
|
|
||||||
from litellm import EmbeddingResponse
|
|
||||||
from litellm.types.llms.openai import EmbeddingInput
|
|
||||||
from litellm.types.llms.vertex_ai import (
|
|
||||||
ContentType,
|
|
||||||
PartType,
|
|
||||||
VertexAITextEmbeddingsResponseObject,
|
|
||||||
)
|
|
||||||
from litellm.types.utils import Embedding, Usage
|
|
||||||
from litellm.utils import get_formatted_prompt, token_counter
|
|
||||||
|
|
||||||
from ..common_utils import VertexAIError
|
|
||||||
|
|
||||||
|
|
||||||
def transform_openai_input_gemini_content(input: str) -> ContentType:
|
|
||||||
"""
|
|
||||||
The content to embed. Only the parts.text fields will be counted.
|
|
||||||
"""
|
|
||||||
return ContentType(parts=[PartType(text=input)])
|
|
||||||
|
|
||||||
|
|
||||||
def process_response(
|
|
||||||
input: EmbeddingInput,
|
|
||||||
model_response: EmbeddingResponse,
|
|
||||||
model: str,
|
|
||||||
_predictions: VertexAITextEmbeddingsResponseObject,
|
|
||||||
) -> EmbeddingResponse:
|
|
||||||
model_response.data = [
|
|
||||||
Embedding(
|
|
||||||
embedding=_predictions["embedding"]["values"],
|
|
||||||
index=0,
|
|
||||||
object="embedding",
|
|
||||||
)
|
|
||||||
]
|
|
||||||
|
|
||||||
model_response.model = model
|
|
||||||
|
|
||||||
input_text = get_formatted_prompt(data={"input": input}, call_type="embedding")
|
|
||||||
prompt_tokens = token_counter(model=model, text=input_text)
|
|
||||||
model_response.usage = Usage(
|
|
||||||
prompt_tokens=prompt_tokens, total_tokens=prompt_tokens
|
|
||||||
)
|
|
||||||
|
|
||||||
return model_response
|
|
|
@ -129,9 +129,6 @@ from .llms.vertex_ai_and_google_ai_studio import (
|
||||||
from .llms.vertex_ai_and_google_ai_studio.embeddings.batch_embed_content_handler import (
|
from .llms.vertex_ai_and_google_ai_studio.embeddings.batch_embed_content_handler import (
|
||||||
GoogleBatchEmbeddings,
|
GoogleBatchEmbeddings,
|
||||||
)
|
)
|
||||||
from .llms.vertex_ai_and_google_ai_studio.embeddings.embed_content_handler import (
|
|
||||||
GoogleEmbeddings,
|
|
||||||
)
|
|
||||||
from .llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
from .llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
||||||
VertexLLM,
|
VertexLLM,
|
||||||
)
|
)
|
||||||
|
@ -178,7 +175,6 @@ triton_chat_completions = TritonChatCompletion()
|
||||||
bedrock_chat_completion = BedrockLLM()
|
bedrock_chat_completion = BedrockLLM()
|
||||||
bedrock_converse_chat_completion = BedrockConverseLLM()
|
bedrock_converse_chat_completion = BedrockConverseLLM()
|
||||||
vertex_chat_completion = VertexLLM()
|
vertex_chat_completion = VertexLLM()
|
||||||
google_embeddings = GoogleEmbeddings()
|
|
||||||
google_batch_embeddings = GoogleBatchEmbeddings()
|
google_batch_embeddings = GoogleBatchEmbeddings()
|
||||||
vertex_partner_models_chat_completion = VertexAIPartnerModels()
|
vertex_partner_models_chat_completion = VertexAIPartnerModels()
|
||||||
vertex_text_to_speech = VertexTextToSpeechAPI()
|
vertex_text_to_speech = VertexTextToSpeechAPI()
|
||||||
|
@ -3541,38 +3537,21 @@ def embedding(
|
||||||
|
|
||||||
gemini_api_key = api_key or get_secret("GEMINI_API_KEY") or litellm.api_key
|
gemini_api_key = api_key or get_secret("GEMINI_API_KEY") or litellm.api_key
|
||||||
|
|
||||||
if isinstance(input, str):
|
response = google_batch_embeddings.batch_embeddings( # type: ignore
|
||||||
response = google_embeddings.text_embeddings( # type: ignore
|
model=model,
|
||||||
model=model,
|
input=input,
|
||||||
input=input,
|
encoding=encoding,
|
||||||
encoding=encoding,
|
logging_obj=logging,
|
||||||
logging_obj=logging,
|
optional_params=optional_params,
|
||||||
optional_params=optional_params,
|
model_response=EmbeddingResponse(),
|
||||||
model_response=EmbeddingResponse(),
|
vertex_project=None,
|
||||||
vertex_project=None,
|
vertex_location=None,
|
||||||
vertex_location=None,
|
vertex_credentials=None,
|
||||||
vertex_credentials=None,
|
aembedding=aembedding,
|
||||||
aembedding=aembedding,
|
print_verbose=print_verbose,
|
||||||
print_verbose=print_verbose,
|
custom_llm_provider="gemini",
|
||||||
custom_llm_provider="gemini",
|
api_key=gemini_api_key,
|
||||||
api_key=gemini_api_key,
|
)
|
||||||
)
|
|
||||||
else:
|
|
||||||
response = google_batch_embeddings.batch_embeddings( # type: ignore
|
|
||||||
model=model,
|
|
||||||
input=input,
|
|
||||||
encoding=encoding,
|
|
||||||
logging_obj=logging,
|
|
||||||
optional_params=optional_params,
|
|
||||||
model_response=EmbeddingResponse(),
|
|
||||||
vertex_project=None,
|
|
||||||
vertex_location=None,
|
|
||||||
vertex_credentials=None,
|
|
||||||
aembedding=aembedding,
|
|
||||||
print_verbose=print_verbose,
|
|
||||||
custom_llm_provider="gemini",
|
|
||||||
api_key=gemini_api_key,
|
|
||||||
)
|
|
||||||
|
|
||||||
elif custom_llm_provider == "vertex_ai":
|
elif custom_llm_provider == "vertex_ai":
|
||||||
vertex_ai_project = (
|
vertex_ai_project = (
|
||||||
|
|
|
@ -149,7 +149,7 @@ def init_rds_client(
|
||||||
# boto3 automatically reads env variables
|
# boto3 automatically reads env variables
|
||||||
|
|
||||||
client = boto3.client(
|
client = boto3.client(
|
||||||
service_name="bedrock-runtime",
|
service_name="rds",
|
||||||
region_name=region_name,
|
region_name=region_name,
|
||||||
config=config,
|
config=config,
|
||||||
)
|
)
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue