Merge branch 'main' into litellm_add_semantic_cache

This commit is contained in:
Ishaan Jaff 2024-02-06 11:18:43 -08:00 committed by GitHub
commit 7cb69c72c8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
25 changed files with 1499 additions and 342 deletions

View file

@ -80,7 +80,7 @@ jobs:
command: |
pwd
ls
python -m pytest -vv litellm/tests/ -x --junitxml=test-results/junit.xml --durations=5
python -m pytest -vv -s litellm/tests/ -x --junitxml=test-results/junit.xml --durations=5
no_output_timeout: 120m
# Store test results

1
.gitignore vendored
View file

@ -43,3 +43,4 @@ ui/litellm-dashboard/package-lock.json
deploy/charts/litellm-helm/*.tgz
deploy/charts/litellm-helm/charts/*
deploy/charts/*.tgz
litellm/proxy/vertex_key.json

View file

@ -10,6 +10,12 @@ repos:
exclude: ^litellm/tests/|^litellm/proxy/proxy_cli.py|^litellm/integrations/|^litellm/proxy/tests/
additional_dependencies: [flake8-print]
files: litellm/.*\.py
- repo: local
hooks:
- id: check-files-match
name: Check if files match
entry: python3 ci_cd/check_files_match.py
language: system
- repo: local
hooks:
- id: mypy

View file

@ -0,0 +1,32 @@
import sys
import filecmp
import shutil
def main(argv=None):
print(
"Comparing model_prices_and_context_window and litellm/model_prices_and_context_window_backup.json files... checking if they match."
)
file1 = "model_prices_and_context_window.json"
file2 = "litellm/model_prices_and_context_window_backup.json"
cmp_result = filecmp.cmp(file1, file2, shallow=False)
if cmp_result:
print(f"Passed! Files {file1} and {file2} match.")
return 0
else:
print(
f"Failed! Files {file1} and {file2} do not match. Copying content from {file1} to {file2}."
)
copy_content(file1, file2)
return 1
def copy_content(source, destination):
shutil.copy2(source, destination)
if __name__ == "__main__":
sys.exit(main())

View file

@ -122,6 +122,7 @@ response = completion(
"generation_id": "gen-id22", # set langfuse Generation ID
"trace_id": "trace-id22", # set langfuse Trace ID
"trace_user_id": "user-id2", # set langfuse Trace User ID
"session_id": "session-1", # set langfuse Session ID
},
)

View file

@ -352,6 +352,22 @@ Request Params:
}
```
## Upperbound /key/generate params
Use this, if you need to control the upperbound that users can use for `max_budget`, `budget_duration` or any `key/generate` param per key.
Set `litellm_settings:upperbound_key_generate_params`:
```yaml
litellm_settings:
upperbound_key_generate_params:
max_budget: 100 # upperbound of $100, for all /key/generate requests
duration: "30d" # upperbound of 30 days for all /key/generate requests
```
** Expected Behavior **
- Send a `/key/generate` request with `max_budget=200`
- Key will be created with `max_budget=100` since 100 is the upper bound
## Default /key/generate params
Use this, if you need to control the default `max_budget` or any `key/generate` param per key.

View file

@ -146,6 +146,7 @@ suppress_debug_info = False
dynamodb_table_name: Optional[str] = None
s3_callback_params: Optional[Dict] = None
default_key_generate_params: Optional[Dict] = None
upperbound_key_generate_params: Optional[Dict] = None
default_team_settings: Optional[List] = None
#### RELIABILITY ####
request_timeout: Optional[float] = 6000

View file

@ -55,8 +55,21 @@ class LangFuseLogger:
else:
self.upstream_langfuse = None
# def log_error(kwargs, response_obj, start_time, end_time):
# generation = trace.generation(
# level ="ERROR" # can be any of DEBUG, DEFAULT, WARNING or ERROR
# status_message='error' # can be any string (e.g. stringified stack trace or error body)
# )
def log_event(
self, kwargs, response_obj, start_time, end_time, user_id, print_verbose
self,
kwargs,
response_obj,
start_time,
end_time,
user_id,
print_verbose,
level="DEFAULT",
status_message=None,
):
# Method definition
@ -84,37 +97,49 @@ class LangFuseLogger:
pass
# end of processing langfuse ########################
if kwargs.get("call_type", None) == "embedding" or isinstance(
response_obj, litellm.EmbeddingResponse
if (
level == "ERROR"
and status_message is not None
and isinstance(status_message, str)
):
input = prompt
output = status_message
elif response_obj is not None and (
kwargs.get("call_type", None) == "embedding"
or isinstance(response_obj, litellm.EmbeddingResponse)
):
input = prompt
output = response_obj["data"]
else:
elif response_obj is not None:
input = prompt
output = response_obj["choices"][0]["message"].json()
print_verbose(f"OUTPUT IN LANGFUSE: {output}; original: {response_obj}")
self._log_langfuse_v2(
user_id,
metadata,
output,
start_time,
end_time,
kwargs,
optional_params,
input,
response_obj,
print_verbose,
) if self._is_langfuse_v2() else self._log_langfuse_v1(
user_id,
metadata,
output,
start_time,
end_time,
kwargs,
optional_params,
input,
response_obj,
)
print(f"OUTPUT IN LANGFUSE: {output}; original: {response_obj}")
if self._is_langfuse_v2():
self._log_langfuse_v2(
user_id,
metadata,
output,
start_time,
end_time,
kwargs,
optional_params,
input,
response_obj,
level,
print_verbose,
)
elif response_obj is not None:
self._log_langfuse_v1(
user_id,
metadata,
output,
start_time,
end_time,
kwargs,
optional_params,
input,
response_obj,
)
self.Langfuse.flush()
print_verbose(
@ -123,15 +148,15 @@ class LangFuseLogger:
verbose_logger.info(f"Langfuse Layer Logging - logging success")
except:
traceback.print_exc()
print_verbose(f"Langfuse Layer Error - {traceback.format_exc()}")
print(f"Langfuse Layer Error - {traceback.format_exc()}")
pass
async def _async_log_event(
self, kwargs, response_obj, start_time, end_time, user_id, print_verbose
):
self.log_event(
kwargs, response_obj, start_time, end_time, user_id, print_verbose
)
"""
TODO: support async calls when langfuse is truly async
"""
def _is_langfuse_v2(self):
import langfuse
@ -193,56 +218,78 @@ class LangFuseLogger:
optional_params,
input,
response_obj,
level,
print_verbose,
):
import langfuse
tags = []
supports_tags = Version(langfuse.version.__version__) >= Version("2.6.3")
supports_costs = Version(langfuse.version.__version__) >= Version("2.7.3")
try:
tags = []
supports_tags = Version(langfuse.version.__version__) >= Version("2.6.3")
supports_costs = Version(langfuse.version.__version__) >= Version("2.7.3")
print_verbose(f"Langfuse Layer Logging - logging to langfuse v2 ")
print_verbose(f"Langfuse Layer Logging - logging to langfuse v2 ")
generation_name = metadata.get("generation_name", None)
if generation_name is None:
# just log `litellm-{call_type}` as the generation name
generation_name = f"litellm-{kwargs.get('call_type', 'completion')}"
generation_name = metadata.get("generation_name", None)
if generation_name is None:
# just log `litellm-{call_type}` as the generation name
generation_name = f"litellm-{kwargs.get('call_type', 'completion')}"
trace_params = {
"name": generation_name,
"input": input,
"output": output,
"user_id": metadata.get("trace_user_id", user_id),
"id": metadata.get("trace_id", None),
}
cost = kwargs["response_cost"]
print_verbose(f"trace: {cost}")
if supports_tags:
for key, value in metadata.items():
tags.append(f"{key}:{value}")
if "cache_hit" in kwargs:
tags.append(f"cache_hit:{kwargs['cache_hit']}")
trace_params.update({"tags": tags})
trace_params = {
"name": generation_name,
"input": input,
"user_id": metadata.get("trace_user_id", user_id),
"id": metadata.get("trace_id", None),
"session_id": metadata.get("session_id", None),
}
trace = self.Langfuse.trace(**trace_params)
if level == "ERROR":
trace_params["status_message"] = output
else:
trace_params["output"] = output
# get generation_id
generation_id = None
if response_obj.get("id", None) is not None:
generation_id = litellm.utils.get_logging_id(start_time, response_obj)
trace.generation(
name=generation_name,
id=metadata.get("generation_id", generation_id),
startTime=start_time,
endTime=end_time,
model=kwargs["model"],
modelParameters=optional_params,
input=input,
output=output,
usage={
"prompt_tokens": response_obj["usage"]["prompt_tokens"],
"completion_tokens": response_obj["usage"]["completion_tokens"],
"total_cost": cost if supports_costs else None,
},
metadata=metadata,
)
cost = kwargs.get("response_cost", None)
print_verbose(f"trace: {cost}")
if supports_tags:
for key, value in metadata.items():
tags.append(f"{key}:{value}")
if "cache_hit" in kwargs:
tags.append(f"cache_hit:{kwargs['cache_hit']}")
trace_params.update({"tags": tags})
trace = self.Langfuse.trace(**trace_params)
if level == "ERROR":
trace.generation(
level="ERROR", # can be any of DEBUG, DEFAULT, WARNING or ERROR
status_message=output, # can be any string (e.g. stringified stack trace or error body)
)
print(f"SUCCESSFULLY LOGGED ERROR")
else:
# get generation_id
generation_id = None
if (
response_obj is not None
and response_obj.get("id", None) is not None
):
generation_id = litellm.utils.get_logging_id(
start_time, response_obj
)
trace.generation(
name=generation_name,
id=metadata.get("generation_id", generation_id),
startTime=start_time,
endTime=end_time,
model=kwargs["model"],
modelParameters=optional_params,
input=input,
output=output,
usage={
"prompt_tokens": response_obj["usage"]["prompt_tokens"],
"completion_tokens": response_obj["usage"]["completion_tokens"],
"total_cost": cost if supports_costs else None,
},
metadata=metadata,
)
except Exception as e:
print(f"Langfuse Layer Error - {traceback.format_exc()}")

View file

@ -146,7 +146,15 @@ def get_ollama_response(
optional_params[k] = v
stream = optional_params.pop("stream", False)
data = {"model": model, "prompt": prompt, "options": optional_params}
format = optional_params.pop("format", None)
data = {
"model": model,
"prompt": prompt,
"options": optional_params,
"stream": stream,
}
if format is not None:
data["format"] = format
## LOGGING
logging_obj.pre_call(

View file

@ -146,7 +146,15 @@ def get_ollama_response(
optional_params[k] = v
stream = optional_params.pop("stream", False)
data = {"model": model, "messages": messages, "options": optional_params}
format = optional_params.pop("format", None)
data = {
"model": model,
"messages": messages,
"options": optional_params,
"stream": stream,
}
if format is not None:
data["format"] = format
## LOGGING
logging_obj.pre_call(
input=None,
@ -320,11 +328,15 @@ async def ollama_acompletion(url, data, model_response, encoding, logging_obj):
model_response["choices"][0]["message"] = message
else:
model_response["choices"][0]["message"] = response_json["message"]
model_response["created"] = int(time.time())
model_response["model"] = "ollama/" + data["model"]
model_response["model"] = "ollama_chat/" + data["model"]
prompt_tokens = response_json.get("prompt_eval_count", litellm.token_counter(messages=data["messages"])) # type: ignore
completion_tokens = response_json.get(
"eval_count", litellm.token_counter(text=response_json["message"])
"eval_count",
litellm.token_counter(
text=response_json["message"]["content"], count_response_tokens=True
),
)
model_response["usage"] = litellm.Usage(
prompt_tokens=prompt_tokens,

View file

@ -263,6 +263,7 @@ async def acompletion(
or custom_llm_provider == "ollama"
or custom_llm_provider == "ollama_chat"
or custom_llm_provider == "vertex_ai"
or custom_llm_provider in litellm.openai_compatible_providers
): # currently implemented aiohttp calls for just azure, openai, hf, ollama, vertex ai soon all.
init_response = await loop.run_in_executor(None, func_with_context)
if isinstance(init_response, dict) or isinstance(
@ -3319,6 +3320,10 @@ async def ahealth_check(
response = {} # args like remaining ratelimit etc.
return response
except Exception as e:
if model not in litellm.model_cost and mode is None:
raise Exception(
"Missing `mode`. Set the `mode` for the model - https://docs.litellm.ai/docs/proxy/health#embedding-models"
)
return {"error": str(e)}

File diff suppressed because it is too large Load diff

View file

@ -78,7 +78,9 @@ litellm_settings:
type: "redis-semantic"
similarity_threshold: 0.8
redis_semantic_cache_embedding_model: azure-embedding-model
# cache: True
upperbound_key_generate_params:
max_budget: 100
duration: "30d"
# setting callback class
# callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [proxy_handler_instance]

View file

@ -636,6 +636,36 @@ async def user_api_key_auth(
raise Exception(
f"Only master key can be used to generate, delete, update or get info for new keys/users. Value of allow_user_auth={allow_user_auth}"
)
# check if token is from litellm-ui, litellm ui makes keys to allow users to login with sso. These keys can only be used for LiteLLM UI functions
# sso/login, ui/login, /key functions and /user functions
# this will never be allowed to call /chat/completions
token_team = getattr(valid_token, "team_id", None)
if token_team is not None:
if token_team == "litellm-dashboard":
# this token is only used for managing the ui
allowed_routes = [
"/sso",
"/login",
"/key",
"/spend",
"/user",
]
# check if the current route startswith any of the allowed routes
if (
route is not None
and isinstance(route, str)
and any(
route.startswith(allowed_route)
for allowed_route in allowed_routes
)
):
# Do something if the current route starts with any of the allowed routes
pass
else:
raise Exception(
f"This key is made for LiteLLM UI, Tried to access route: {route}. Not allowed"
)
return UserAPIKeyAuth(api_key=api_key, **valid_token_dict)
else:
raise Exception(f"Invalid Key Passed to LiteLLM Proxy")
@ -758,9 +788,10 @@ async def _PROXY_track_cost_callback(
verbose_proxy_logger.info(
f"response_cost {response_cost}, for user_id {user_id}"
)
if user_api_key and (
prisma_client is not None or custom_db_client is not None
):
verbose_proxy_logger.debug(
f"user_api_key {user_api_key}, prisma_client: {prisma_client}, custom_db_client: {custom_db_client}"
)
if user_api_key is not None:
await update_database(
token=user_api_key,
response_cost=response_cost,
@ -770,6 +801,8 @@ async def _PROXY_track_cost_callback(
start_time=start_time,
end_time=end_time,
)
else:
raise Exception("User API key missing from custom callback.")
else:
if kwargs["stream"] != True or (
kwargs["stream"] == True
@ -1361,6 +1394,26 @@ class ProxyConfig:
proxy_config = ProxyConfig()
def _duration_in_seconds(duration: str):
match = re.match(r"(\d+)([smhd]?)", duration)
if not match:
raise ValueError("Invalid duration format")
value, unit = match.groups()
value = int(value)
if unit == "s":
return value
elif unit == "m":
return value * 60
elif unit == "h":
return value * 3600
elif unit == "d":
return value * 86400
else:
raise ValueError("Unsupported duration unit")
async def generate_key_helper_fn(
duration: Optional[str],
models: list,
@ -1395,25 +1448,6 @@ async def generate_key_helper_fn(
if token is None:
token = f"sk-{secrets.token_urlsafe(16)}"
def _duration_in_seconds(duration: str):
match = re.match(r"(\d+)([smhd]?)", duration)
if not match:
raise ValueError("Invalid duration format")
value, unit = match.groups()
value = int(value)
if unit == "s":
return value
elif unit == "m":
return value * 60
elif unit == "h":
return value * 3600
elif unit == "d":
return value * 86400
else:
raise ValueError("Unsupported duration unit")
if duration is None: # allow tokens that never expire
expires = None
else:
@ -2630,6 +2664,36 @@ async def generate_key_fn(
elif key == "metadata" and value == {}:
setattr(data, key, litellm.default_key_generate_params.get(key, {}))
# check if user set default key/generate params on config.yaml
if litellm.upperbound_key_generate_params is not None:
for elem in data:
# if key in litellm.upperbound_key_generate_params, use the min of value and litellm.upperbound_key_generate_params[key]
key, value = elem
if value is not None and key in litellm.upperbound_key_generate_params:
# if value is float/int
if key in [
"max_budget",
"max_parallel_requests",
"tpm_limit",
"rpm_limit",
]:
if value > litellm.upperbound_key_generate_params[key]:
# directly compare floats/ints
setattr(
data, key, litellm.upperbound_key_generate_params[key]
)
elif key == "budget_duration":
# budgets are in 1s, 1m, 1h, 1d, 1m (30s, 30m, 30h, 30d, 30m)
# compare the duration in seconds and max duration in seconds
upperbound_budget_duration = _duration_in_seconds(
duration=litellm.upperbound_key_generate_params[key]
)
user_set_budget_duration = _duration_in_seconds(duration=value)
if user_set_budget_duration > upperbound_budget_duration:
setattr(
data, key, litellm.upperbound_key_generate_params[key]
)
data_json = data.json() # type: ignore
# if we get max_budget passed to /key/generate, then use it as key_max_budget. Since generate_key_helper_fn is used to make new users

View file

@ -41,7 +41,7 @@ def test_completion_custom_provider_model_name():
messages=messages,
logger_fn=logger_fn,
)
# Add any assertions here to check the, response
# Add any assertions here to check the,response
print(response)
print(response["choices"][0]["finish_reason"])
except litellm.Timeout as e:

View file

@ -9,21 +9,11 @@ model_list:
api_key: os.environ/AZURE_CANADA_API_KEY
model: azure/gpt-35-turbo
model_name: azure-model
- litellm_params:
api_base: https://gateway.ai.cloudflare.com/v1/0399b10e77ac6668c80404a5ff49eb37/litellm-test/azure-openai/openai-gpt-4-test-v-1
api_key: os.environ/AZURE_API_KEY
model: azure/chatgpt-v-2
model_name: azure-cloudflare-model
- litellm_params:
api_base: https://openai-france-1234.openai.azure.com
api_key: os.environ/AZURE_FRANCE_API_KEY
model: azure/gpt-turbo
model_name: azure-model
- litellm_params:
model: gpt-3.5-turbo
model_info:
description: this is a test openai model
model_name: test_openai_models
- litellm_params:
model: gpt-3.5-turbo
model_info:
@ -36,93 +26,8 @@ model_list:
description: this is a test openai model
id: 4d1ee26c-abca-450c-8744-8e87fd6755e9
model_name: test_openai_models
- litellm_params:
model: gpt-3.5-turbo
model_info:
description: this is a test openai model
id: 00e19c0f-b63d-42bb-88e9-016fb0c60764
model_name: test_openai_models
- litellm_params:
model: gpt-3.5-turbo
model_info:
description: this is a test openai model
id: 79fc75bf-8e1b-47d5-8d24-9365a854af03
model_name: test_openai_models
- litellm_params:
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: 2023-07-01-preview
model: azure/azure-embedding-model
model_info:
mode: embedding
model_name: azure-embedding-model
- litellm_params:
model: gpt-3.5-turbo
model_info:
description: this is a test openai model
id: 55848c55-4162-40f9-a6e2-9a722b9ef404
model_name: test_openai_models
- litellm_params:
model: gpt-3.5-turbo
model_info:
description: this is a test openai model
id: 34339b1e-e030-4bcc-a531-c48559f10ce4
model_name: test_openai_models
- litellm_params:
model: gpt-3.5-turbo
model_info:
description: this is a test openai model
id: f6f74e14-ac64-4403-9365-319e584dcdc5
model_name: test_openai_models
- litellm_params:
model: gpt-3.5-turbo
model_info:
description: this is a test openai model
id: 9b1ef341-322c-410a-8992-903987fef439
model_name: test_openai_models
- litellm_params:
model: bedrock/amazon.titan-embed-text-v1
model_info:
mode: embedding
model_name: amazon-embeddings
- litellm_params:
model: sagemaker/berri-benchmarking-gpt-j-6b-fp16
model_info:
mode: embedding
model_name: GPT-J 6B - Sagemaker Text Embedding (Internal)
- litellm_params:
model: dall-e-3
model_info:
mode: image_generation
model_name: dall-e-3
- litellm_params:
api_base: os.environ/AZURE_SWEDEN_API_BASE
api_key: os.environ/AZURE_SWEDEN_API_KEY
api_version: 2023-12-01-preview
model: azure/dall-e-3-test
model_info:
mode: image_generation
model_name: dall-e-3
- litellm_params:
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: 2023-06-01-preview
model: azure/
model_info:
mode: image_generation
model_name: dall-e-2
- litellm_params:
api_base: os.environ/AZURE_API_BASE
api_key: os.environ/AZURE_API_KEY
api_version: 2023-07-01-preview
model: azure/azure-embedding-model
model_info:
base_model: text-embedding-ada-002
mode: embedding
model_name: text-embedding-ada-002
- litellm_params:
model: gpt-3.5-turbo
model_info:
description: this is a test openai model
id: 34cb2419-7c63-44ae-a189-53f1d1ce5953
model_name: test_openai_models

View file

@ -490,8 +490,13 @@ def test_dynamo_db_migration(custom_db_client):
try:
async def test():
request = GenerateKeyRequest(max_budget=1)
key = await generate_key_fn(request)
print(key)
generated_key = key.key
bearer_token = (
"Bearer " + "sk-elJDL2pOEjcAuC7zD4psAg"
"Bearer " + generated_key
) # this works with ishaan's db, it's a never expiring key
request = Request(scope={"type": "http"})

View file

@ -44,6 +44,7 @@ from litellm.proxy.proxy_server import (
info_key_fn,
update_key_fn,
generate_key_fn,
generate_key_helper_fn,
spend_user_fn,
spend_key_fn,
view_spend_logs,
@ -1278,6 +1279,40 @@ async def test_default_key_params(prisma_client):
pytest.fail(f"Got exception {e}")
@pytest.mark.asyncio()
async def test_upperbound_key_params(prisma_client):
"""
- create key
- get key info
- assert key_name is not null
"""
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
litellm.upperbound_key_generate_params = {
"max_budget": 0.001,
"budget_duration": "1m",
}
await litellm.proxy.proxy_server.prisma_client.connect()
try:
request = GenerateKeyRequest(
max_budget=200000,
budget_duration="30d",
)
key = await generate_key_fn(request)
generated_key = key.key
result = await info_key_fn(key=generated_key)
key_info = result["info"]
# assert it used the upper bound for max_budget, and budget_duration
assert key_info["max_budget"] == 0.001
assert key_info["budget_duration"] == "1m"
print(result)
except Exception as e:
print("Got Exception", e)
pytest.fail(f"Got exception {e}")
def test_get_bearer_token():
from litellm.proxy.proxy_server import _get_bearer_token
@ -1378,3 +1413,35 @@ async def test_user_api_key_auth_without_master_key(prisma_client):
except Exception as e:
print("Got Exception", e)
pytest.fail(f"Got exception {e}")
@pytest.mark.asyncio
async def test_key_with_no_permissions(prisma_client):
"""
- create key
- get key info
- assert key_name is null
"""
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
setattr(litellm.proxy.proxy_server, "general_settings", {"allow_user_auth": False})
await litellm.proxy.proxy_server.prisma_client.connect()
try:
response = await generate_key_helper_fn(
**{"duration": "1hr", "key_max_budget": 0, "models": [], "aliases": {}, "config": {}, "spend": 0, "user_id": "ishaan", "team_id": "litellm-dashboard"} # type: ignore
)
print(response)
key = response["token"]
# make a /chat/completions call -> it should fail
request = Request(scope={"type": "http"})
request._url = URL(url="/chat/completions")
# use generated key to auth in
result = await user_api_key_auth(request=request, api_key="Bearer " + key)
print("result from user auth with new key", result)
pytest.fail(f"This should have failed!. IT's an invalid key")
except Exception as e:
print("Got Exception", e)
print(e.message)

View file

@ -379,6 +379,7 @@ async def test_normal_router_tpm_limit():
)
except Exception as e:
print("Exception on test_normal_router_tpm_limit", e)
assert e.status_code == 429

View file

@ -33,6 +33,11 @@ def test_proxy_gunicorn_startup_direct_config():
Test both approaches
"""
try:
from litellm._logging import verbose_proxy_logger, verbose_router_logger
import logging
verbose_proxy_logger.setLevel(level=logging.DEBUG)
verbose_router_logger.setLevel(level=logging.DEBUG)
filepath = os.path.dirname(os.path.abspath(__file__))
# test with worker_config = config yaml
config_fp = f"{filepath}/test_configs/test_config_no_auth.yaml"
@ -48,6 +53,11 @@ def test_proxy_gunicorn_startup_direct_config():
def test_proxy_gunicorn_startup_config_dict():
try:
from litellm._logging import verbose_proxy_logger, verbose_router_logger
import logging
verbose_proxy_logger.setLevel(level=logging.DEBUG)
verbose_router_logger.setLevel(level=logging.DEBUG)
filepath = os.path.dirname(os.path.abspath(__file__))
# test with worker_config = config yaml
config_fp = f"{filepath}/test_configs/test_config_no_auth.yaml"

View file

@ -980,12 +980,9 @@ class Logging:
self.model_call_details["log_event_type"] = "post_api_call"
# User Logging -> if you pass in a custom logging function
verbose_logger.debug(
print_verbose(
f"RAW RESPONSE:\n{self.model_call_details.get('original_response', self.model_call_details)}\n\n"
)
verbose_logger.debug(
f"Logging Details Post-API Call: LiteLLM Params: {self.model_call_details}"
)
if self.logger_fn and callable(self.logger_fn):
try:
self.logger_fn(
@ -1636,34 +1633,6 @@ class Logging:
end_time=end_time,
print_verbose=print_verbose,
)
if callback == "langfuse":
global langFuseLogger
print_verbose("reaches Async langfuse for logging!")
kwargs = {}
for k, v in self.model_call_details.items():
if (
k != "original_response"
): # copy.deepcopy raises errors as this could be a coroutine
kwargs[k] = v
# this only logs streaming once, complete_streaming_response exists i.e when stream ends
if self.stream:
if "complete_streaming_response" not in kwargs:
return
else:
print_verbose(
"reaches Async langfuse for streaming logging!"
)
result = kwargs["complete_streaming_response"]
if langFuseLogger is None:
langFuseLogger = LangFuseLogger()
await langFuseLogger._async_log_event(
kwargs=kwargs,
response_obj=result,
start_time=start_time,
end_time=end_time,
user_id=kwargs.get("user", None),
print_verbose=print_verbose,
)
except:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}"
@ -1788,9 +1757,37 @@ class Logging:
response_obj=result,
kwargs=self.model_call_details,
)
elif callback == "langfuse":
global langFuseLogger
verbose_logger.debug("reaches langfuse for logging!")
kwargs = {}
for k, v in self.model_call_details.items():
if (
k != "original_response"
): # copy.deepcopy raises errors as this could be a coroutine
kwargs[k] = v
# this only logs streaming once, complete_streaming_response exists i.e when stream ends
if langFuseLogger is None or (
self.langfuse_public_key != langFuseLogger.public_key
and self.langfuse_secret != langFuseLogger.secret_key
):
langFuseLogger = LangFuseLogger(
langfuse_public_key=self.langfuse_public_key,
langfuse_secret=self.langfuse_secret,
)
langFuseLogger.log_event(
start_time=start_time,
end_time=end_time,
response_obj=None,
user_id=kwargs.get("user", None),
print_verbose=print_verbose,
status_message=str(exception),
level="ERROR",
kwargs=self.model_call_details,
)
except Exception as e:
print_verbose(
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {traceback.format_exc()}"
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {str(e)}"
)
print_verbose(
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
@ -3860,6 +3857,8 @@ def get_optional_params(
and custom_llm_provider != "text-completion-openai"
and custom_llm_provider != "azure"
and custom_llm_provider != "vertex_ai"
and custom_llm_provider != "anyscale"
and custom_llm_provider != "together_ai"
):
if custom_llm_provider == "ollama" or custom_llm_provider == "ollama_chat":
# ollama actually supports json output
@ -3878,11 +3877,6 @@ def get_optional_params(
optional_params[
"functions_unsupported_model"
] = non_default_params.pop("functions")
elif (
custom_llm_provider == "anyscale"
and model == "mistralai/Mistral-7B-Instruct-v0.1"
): # anyscale just supports function calling with mistral
pass
elif (
litellm.add_function_to_prompt
): # if user opts to add it to prompt instead
@ -4095,6 +4089,8 @@ def get_optional_params(
"top_p",
"stop",
"frequency_penalty",
"tools",
"tool_choice",
]
_check_valid_arg(supported_params=supported_params)
@ -4112,6 +4108,10 @@ def get_optional_params(
] = frequency_penalty # https://docs.together.ai/reference/inference
if stop is not None:
optional_params["stop"] = stop
if tools is not None:
optional_params["tools"] = tools
if tool_choice is not None:
optional_params["tool_choice"] = tool_choice
elif custom_llm_provider == "ai21":
## check if unsupported param passed in
supported_params = [

View file

@ -156,8 +156,8 @@
"max_tokens": 4097,
"max_input_tokens": 4097,
"max_output_tokens": 4096,
"input_cost_per_token": 0.000012,
"output_cost_per_token": 0.000016,
"input_cost_per_token": 0.000003,
"output_cost_per_token": 0.000006,
"litellm_provider": "openai",
"mode": "chat"
},

View file

@ -1,6 +1,6 @@
[tool.poetry]
name = "litellm"
version = "1.22.4"
version = "1.22.8"
description = "Library to easily interface with LLM API providers"
authors = ["BerriAI"]
license = "MIT"
@ -69,7 +69,7 @@ requires = ["poetry-core", "wheel"]
build-backend = "poetry.core.masonry.api"
[tool.commitizen]
version = "1.22.4"
version = "1.22.8"
version_files = [
"pyproject.toml:^version"
]

View file

@ -13,7 +13,7 @@ redisvl==0.0.7 # semantic caching
numpy==1.24.3 # semantic caching
prisma==0.11.0 # for db
mangum==0.17.0 # for aws lambda functions
google-generativeai==0.1.0 # for vertex ai calls
google-generativeai==0.3.2 # for vertex ai calls
async_generator==1.10.0 # for async ollama calls
traceloop-sdk==0.5.3 # for open telemetry logging
langfuse>=2.6.3 # for langfuse self-hosted logging

View file

@ -5,8 +5,8 @@ import "./globals.css";
const inter = Inter({ subsets: ["latin"] });
export const metadata: Metadata = {
title: "Create Next App",
description: "Generated by create next app",
title: "🚅 LiteLLM",
description: "LiteLLM Proxy Admin UI",
};
export default function RootLayout({