test(test_langfuse.py): handle timeouts

This commit is contained in:
Krrish Dholakia 2023-11-17 17:05:01 -08:00
parent 1ba32368ef
commit 7d70bf84a7
4 changed files with 151 additions and 15 deletions

View file

@ -243,7 +243,7 @@ def completion(
messages: List = [],
functions: List = [],
function_call: str = "", # optional params
timeout: Union[float, int] = 600.0,
timeout: Optional[Union[float, int]] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
n: Optional[int] = None,
@ -338,6 +338,8 @@ def completion(
if mock_response:
return mock_completion(model, messages, stream=stream, mock_response=mock_response)
if timeout is None:
timeout = 600 # set timeout for 10 minutes by default
timeout = float(timeout)
try:
if base_url:

View file

@ -300,3 +300,120 @@ class Router:
if k not in data: # prioritize model-specific params > default router params
data[k] = v
return await litellm.aembedding(**{**data, "input": input, "caching": self.cache_responses, **kwargs})
def deployment_callback(
self,
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
"""
Function LiteLLM submits a callback to after a successful
completion. Purpose of this is ti update TPM/RPM usage per model
"""
model_name = kwargs.get('model', None) # i.e. gpt35turbo
custom_llm_provider = kwargs.get("litellm_params", {}).get('custom_llm_provider', None) # i.e. azure
if custom_llm_provider:
model_name = f"{custom_llm_provider}/{model_name}"
total_tokens = completion_response['usage']['total_tokens']
self._set_deployment_usage(model_name, total_tokens)
def get_available_deployment(self,
model: str,
messages: Optional[List[Dict[str, str]]] = None,
input: Optional[Union[str, List]] = None):
"""
Returns a deployment with the lowest TPM/RPM usage.
"""
# get list of potential deployments
potential_deployments = []
for item in self.model_list:
if item["model_name"] == model:
potential_deployments.append(item)
# set first model as current model to calculate token count
deployment = potential_deployments[0]
# get encoding
token_count = 0
if messages is not None:
token_count = litellm.token_counter(model=deployment["model_name"], messages=messages)
elif input is not None:
if isinstance(input, List):
input_text = "".join(text for text in input)
else:
input_text = input
token_count = litellm.token_counter(model=deployment["model_name"], text=input_text)
# -----------------------
# Find lowest used model
# ----------------------
lowest_tpm = float("inf")
deployment = None
# Go through all the models to get tpm, rpm
for item in potential_deployments:
item_tpm, item_rpm = self._get_deployment_usage(deployment_name=item["litellm_params"]["model"])
if item_tpm == 0:
return item
elif item_tpm + token_count > item["tpm"] or item_rpm + 1 >= item["rpm"]:
continue
elif item_tpm < lowest_tpm:
lowest_tpm = item_tpm
deployment = item
# if none, raise exception
if deployment is None:
raise ValueError("No models available.")
# return model
return deployment
def _get_deployment_usage(
self,
deployment_name: str
):
# ------------
# Setup values
# ------------
current_minute = datetime.now().strftime("%H-%M")
tpm_key = f'{deployment_name}:tpm:{current_minute}'
rpm_key = f'{deployment_name}:rpm:{current_minute}'
# ------------
# Return usage
# ------------
tpm = self.cache.get_cache(cache_key=tpm_key) or 0
rpm = self.cache.get_cache(cache_key=rpm_key) or 0
return int(tpm), int(rpm)
def increment(self, key: str, increment_value: int):
# get value
cached_value = self.cache.get_cache(cache_key=key)
# update value
try:
cached_value = cached_value + increment_value
except:
cached_value = increment_value
# save updated value
self.cache.add_cache(result=cached_value, cache_key=key, ttl=self.default_cache_time_seconds)
def _set_deployment_usage(
self,
model_name: str,
total_tokens: int
):
# ------------
# Setup values
# ------------
current_minute = datetime.now().strftime("%H-%M")
tpm_key = f'{model_name}:tpm:{current_minute}'
rpm_key = f'{model_name}:rpm:{current_minute}'
# ------------
# Update usage
# ------------
self.increment(tpm_key, total_tokens)
self.increment(rpm_key, 1)

View file

@ -25,14 +25,16 @@ def test_sync_response():
# test_sync_response()
def test_sync_response_anyscale():
litellm.set_verbose = True
litellm.set_verbose = False
user_message = "Hello, how are you?"
messages = [{"content": user_message, "role": "user"}]
try:
response = completion(model="anyscale/mistralai/Mistral-7B-Instruct-v0.1", messages=messages, timeout=5)
response = completion(model="anyscale/mistralai/Mistral-7B-Instruct-v0.1", messages=messages)
except Exception as e:
pytest.fail(f"An exception occurred: {e}")
test_sync_response()
print(f"STARTING ANYSCALE RESPONSE")
test_sync_response_anyscale()
# test_sync_response_anyscale()
def test_async_response_openai():

View file

@ -11,18 +11,25 @@ litellm.num_retries = 3
litellm.success_callback = ["langfuse"]
# litellm.set_verbose = True
import time
import pytest
def test_langfuse_logging_async():
litellm.set_verbose = True
async def _test_langfuse():
return await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content":"This is a test"}],
max_tokens=1000,
temperature=0.7,
)
response = asyncio.run(_test_langfuse())
print(f"response: {response}")
try:
litellm.set_verbose = True
async def _test_langfuse():
return await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content":"This is a test"}],
max_tokens=1000,
temperature=0.7,
timeout=5
)
response = asyncio.run(_test_langfuse())
print(f"response: {response}")
except litellm.Timeout as e:
pass
except Exception as e:
pytest.fail(f"An exception occurred - {e}")
# test_langfuse_logging_async()
@ -37,6 +44,8 @@ def test_langfuse_logging():
temperature=0.2
)
print(response)
except litellm.Timeout as e:
pass
except Exception as e:
print(e)
@ -59,6 +68,8 @@ def test_langfuse_logging_stream():
for chunk in response:
pass
# print(chunk)
except litellm.Timeout as e:
pass
except Exception as e:
print(e)
@ -79,6 +90,8 @@ def test_langfuse_logging_custom_generation_name():
}
)
print(response)
except litellm.Timeout as e:
pass
except Exception as e:
print(e)
@ -112,6 +125,8 @@ def test_langfuse_logging_function_calling():
functions=function1,
)
print(response)
except litellm.Timeout as e:
pass
except Exception as e:
print(e)