Merge remote-tracking branch 'upstream/main' into fix/reset-end-user-budget-by-duration

This commit is contained in:
Laurien Lummer 2025-03-19 15:05:00 +01:00
commit 7dc0d29fe9
693 changed files with 49813 additions and 14285 deletions

View file

@ -49,7 +49,7 @@ jobs:
pip install opentelemetry-api==1.25.0 pip install opentelemetry-api==1.25.0
pip install opentelemetry-sdk==1.25.0 pip install opentelemetry-sdk==1.25.0
pip install opentelemetry-exporter-otlp==1.25.0 pip install opentelemetry-exporter-otlp==1.25.0
pip install openai==1.54.0 pip install openai==1.66.1
pip install prisma==0.11.0 pip install prisma==0.11.0
pip install "detect_secrets==1.5.0" pip install "detect_secrets==1.5.0"
pip install "httpx==0.24.1" pip install "httpx==0.24.1"
@ -71,7 +71,7 @@ jobs:
pip install "Pillow==10.3.0" pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0" pip install "jsonschema==4.22.0"
pip install "pytest-xdist==3.6.1" pip install "pytest-xdist==3.6.1"
pip install "websockets==10.4" pip install "websockets==13.1.0"
pip uninstall posthog -y pip uninstall posthog -y
- save_cache: - save_cache:
paths: paths:
@ -168,7 +168,7 @@ jobs:
pip install opentelemetry-api==1.25.0 pip install opentelemetry-api==1.25.0
pip install opentelemetry-sdk==1.25.0 pip install opentelemetry-sdk==1.25.0
pip install opentelemetry-exporter-otlp==1.25.0 pip install opentelemetry-exporter-otlp==1.25.0
pip install openai==1.54.0 pip install openai==1.66.1
pip install prisma==0.11.0 pip install prisma==0.11.0
pip install "detect_secrets==1.5.0" pip install "detect_secrets==1.5.0"
pip install "httpx==0.24.1" pip install "httpx==0.24.1"
@ -189,6 +189,7 @@ jobs:
pip install "diskcache==5.6.1" pip install "diskcache==5.6.1"
pip install "Pillow==10.3.0" pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0" pip install "jsonschema==4.22.0"
pip install "websockets==13.1.0"
- save_cache: - save_cache:
paths: paths:
- ./venv - ./venv
@ -267,7 +268,7 @@ jobs:
pip install opentelemetry-api==1.25.0 pip install opentelemetry-api==1.25.0
pip install opentelemetry-sdk==1.25.0 pip install opentelemetry-sdk==1.25.0
pip install opentelemetry-exporter-otlp==1.25.0 pip install opentelemetry-exporter-otlp==1.25.0
pip install openai==1.54.0 pip install openai==1.66.1
pip install prisma==0.11.0 pip install prisma==0.11.0
pip install "detect_secrets==1.5.0" pip install "detect_secrets==1.5.0"
pip install "httpx==0.24.1" pip install "httpx==0.24.1"
@ -288,6 +289,7 @@ jobs:
pip install "diskcache==5.6.1" pip install "diskcache==5.6.1"
pip install "Pillow==10.3.0" pip install "Pillow==10.3.0"
pip install "jsonschema==4.22.0" pip install "jsonschema==4.22.0"
pip install "websockets==13.1.0"
- save_cache: - save_cache:
paths: paths:
- ./venv - ./venv
@ -511,7 +513,7 @@ jobs:
pip install opentelemetry-api==1.25.0 pip install opentelemetry-api==1.25.0
pip install opentelemetry-sdk==1.25.0 pip install opentelemetry-sdk==1.25.0
pip install opentelemetry-exporter-otlp==1.25.0 pip install opentelemetry-exporter-otlp==1.25.0
pip install openai==1.54.0 pip install openai==1.66.1
pip install prisma==0.11.0 pip install prisma==0.11.0
pip install "detect_secrets==1.5.0" pip install "detect_secrets==1.5.0"
pip install "httpx==0.24.1" pip install "httpx==0.24.1"
@ -678,6 +680,92 @@ jobs:
paths: paths:
- llm_translation_coverage.xml - llm_translation_coverage.xml
- llm_translation_coverage - llm_translation_coverage
llm_responses_api_testing:
docker:
- image: cimg/python:3.11
auth:
username: ${DOCKERHUB_USERNAME}
password: ${DOCKERHUB_PASSWORD}
working_directory: ~/project
steps:
- checkout
- run:
name: Install Dependencies
command: |
python -m pip install --upgrade pip
python -m pip install -r requirements.txt
pip install "pytest==7.3.1"
pip install "pytest-retry==1.6.3"
pip install "pytest-cov==5.0.0"
pip install "pytest-asyncio==0.21.1"
pip install "respx==0.21.1"
# Run pytest and generate JUnit XML report
- run:
name: Run tests
command: |
pwd
ls
python -m pytest -vv tests/llm_responses_api_testing --cov=litellm --cov-report=xml -x -s -v --junitxml=test-results/junit.xml --durations=5
no_output_timeout: 120m
- run:
name: Rename the coverage files
command: |
mv coverage.xml llm_responses_api_coverage.xml
mv .coverage llm_responses_api_coverage
# Store test results
- store_test_results:
path: test-results
- persist_to_workspace:
root: .
paths:
- llm_responses_api_coverage.xml
- llm_responses_api_coverage
litellm_mapped_tests:
docker:
- image: cimg/python:3.11
auth:
username: ${DOCKERHUB_USERNAME}
password: ${DOCKERHUB_PASSWORD}
working_directory: ~/project
steps:
- checkout
- run:
name: Install Dependencies
command: |
python -m pip install --upgrade pip
python -m pip install -r requirements.txt
pip install "pytest-mock==3.12.0"
pip install "pytest==7.3.1"
pip install "pytest-retry==1.6.3"
pip install "pytest-cov==5.0.0"
pip install "pytest-asyncio==0.21.1"
pip install "respx==0.21.1"
pip install "hypercorn==0.17.3"
# Run pytest and generate JUnit XML report
- run:
name: Run tests
command: |
pwd
ls
python -m pytest -vv tests/litellm --cov=litellm --cov-report=xml -x -s -v --junitxml=test-results/junit.xml --durations=5
no_output_timeout: 120m
- run:
name: Rename the coverage files
command: |
mv coverage.xml litellm_mapped_tests_coverage.xml
mv .coverage litellm_mapped_tests_coverage
# Store test results
- store_test_results:
path: test-results
- persist_to_workspace:
root: .
paths:
- litellm_mapped_tests_coverage.xml
- litellm_mapped_tests_coverage
batches_testing: batches_testing:
docker: docker:
- image: cimg/python:3.11 - image: cimg/python:3.11
@ -1046,6 +1134,7 @@ jobs:
- run: python -c "from litellm import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1) - run: python -c "from litellm import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
- run: ruff check ./litellm - run: ruff check ./litellm
# - run: python ./tests/documentation_tests/test_general_setting_keys.py # - run: python ./tests/documentation_tests/test_general_setting_keys.py
- run: python ./tests/code_coverage_tests/check_licenses.py
- run: python ./tests/code_coverage_tests/router_code_coverage.py - run: python ./tests/code_coverage_tests/router_code_coverage.py
- run: python ./tests/code_coverage_tests/callback_manager_test.py - run: python ./tests/code_coverage_tests/callback_manager_test.py
- run: python ./tests/code_coverage_tests/recursive_detector.py - run: python ./tests/code_coverage_tests/recursive_detector.py
@ -1058,6 +1147,7 @@ jobs:
- run: python ./tests/code_coverage_tests/ensure_async_clients_test.py - run: python ./tests/code_coverage_tests/ensure_async_clients_test.py
- run: python ./tests/code_coverage_tests/enforce_llms_folder_style.py - run: python ./tests/code_coverage_tests/enforce_llms_folder_style.py
- run: python ./tests/documentation_tests/test_circular_imports.py - run: python ./tests/documentation_tests/test_circular_imports.py
- run: python ./tests/code_coverage_tests/prevent_key_leaks_in_exceptions.py
- run: helm lint ./deploy/charts/litellm-helm - run: helm lint ./deploy/charts/litellm-helm
db_migration_disable_update_check: db_migration_disable_update_check:
@ -1067,6 +1157,23 @@ jobs:
working_directory: ~/project working_directory: ~/project
steps: steps:
- checkout - checkout
- run:
name: Install Python 3.9
command: |
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh --output miniconda.sh
bash miniconda.sh -b -p $HOME/miniconda
export PATH="$HOME/miniconda/bin:$PATH"
conda init bash
source ~/.bashrc
conda create -n myenv python=3.9 -y
conda activate myenv
python --version
- run:
name: Install Dependencies
command: |
pip install "pytest==7.3.1"
pip install "pytest-asyncio==0.21.1"
pip install aiohttp
- run: - run:
name: Build Docker image name: Build Docker image
command: | command: |
@ -1074,29 +1181,48 @@ jobs:
- run: - run:
name: Run Docker container name: Run Docker container
command: | command: |
docker run --name my-app \ docker run -d \
-p 4000:4000 \ -p 4000:4000 \
-e DATABASE_URL=$PROXY_DATABASE_URL \ -e DATABASE_URL=$PROXY_DATABASE_URL \
-e DISABLE_SCHEMA_UPDATE="True" \ -e DISABLE_SCHEMA_UPDATE="True" \
-v $(pwd)/litellm/proxy/example_config_yaml/bad_schema.prisma:/app/schema.prisma \ -v $(pwd)/litellm/proxy/example_config_yaml/bad_schema.prisma:/app/schema.prisma \
-v $(pwd)/litellm/proxy/example_config_yaml/bad_schema.prisma:/app/litellm/proxy/schema.prisma \ -v $(pwd)/litellm/proxy/example_config_yaml/bad_schema.prisma:/app/litellm/proxy/schema.prisma \
-v $(pwd)/litellm/proxy/example_config_yaml/disable_schema_update.yaml:/app/config.yaml \ -v $(pwd)/litellm/proxy/example_config_yaml/disable_schema_update.yaml:/app/config.yaml \
--name my-app \
myapp:latest \ myapp:latest \
--config /app/config.yaml \ --config /app/config.yaml \
--port 4000 > docker_output.log 2>&1 || true --port 4000
- run: - run:
name: Display Docker logs name: Install curl and dockerize
command: cat docker_output.log
- run:
name: Check for expected error
command: | command: |
if grep -q "prisma schema out of sync with db. Consider running these sql_commands to sync the two" docker_output.log; then sudo apt-get update
echo "Expected error found. Test passed." sudo apt-get install -y curl
sudo wget https://github.com/jwilder/dockerize/releases/download/v0.6.1/dockerize-linux-amd64-v0.6.1.tar.gz
sudo tar -C /usr/local/bin -xzvf dockerize-linux-amd64-v0.6.1.tar.gz
sudo rm dockerize-linux-amd64-v0.6.1.tar.gz
- run:
name: Wait for container to be ready
command: dockerize -wait http://localhost:4000 -timeout 1m
- run:
name: Check container logs for expected message
command: |
echo "=== Printing Full Container Startup Logs ==="
docker logs my-app
echo "=== End of Full Container Startup Logs ==="
if docker logs my-app 2>&1 | grep -q "prisma schema out of sync with db. Consider running these sql_commands to sync the two"; then
echo "Expected message found in logs. Test passed."
else else
echo "Expected error not found. Test failed." echo "Expected message not found in logs. Test failed."
cat docker_output.log
exit 1 exit 1
fi fi
- run:
name: Run Basic Proxy Startup Tests (Health Readiness and Chat Completion)
command: |
python -m pytest -vv tests/basic_proxy_startup_tests -x --junitxml=test-results/junit-2.xml --durations=5
no_output_timeout: 120m
build_and_test: build_and_test:
machine: machine:
@ -1152,7 +1278,7 @@ jobs:
pip install "aiodynamo==23.10.1" pip install "aiodynamo==23.10.1"
pip install "asyncio==3.4.3" pip install "asyncio==3.4.3"
pip install "PyGithub==1.59.1" pip install "PyGithub==1.59.1"
pip install "openai==1.54.0 " pip install "openai==1.66.1"
- run: - run:
name: Install Grype name: Install Grype
command: | command: |
@ -1227,13 +1353,13 @@ jobs:
command: | command: |
pwd pwd
ls ls
python -m pytest -s -vv tests/*.py -x --junitxml=test-results/junit.xml --durations=5 --ignore=tests/otel_tests --ignore=tests/pass_through_tests --ignore=tests/proxy_admin_ui_tests --ignore=tests/load_tests --ignore=tests/llm_translation --ignore=tests/image_gen_tests --ignore=tests/pass_through_unit_tests python -m pytest -s -vv tests/*.py -x --junitxml=test-results/junit.xml --durations=5 --ignore=tests/otel_tests --ignore=tests/pass_through_tests --ignore=tests/proxy_admin_ui_tests --ignore=tests/load_tests --ignore=tests/llm_translation --ignore=tests/llm_responses_api_testing --ignore=tests/image_gen_tests --ignore=tests/pass_through_unit_tests
no_output_timeout: 120m no_output_timeout: 120m
# Store test results # Store test results
- store_test_results: - store_test_results:
path: test-results path: test-results
e2e_openai_misc_endpoints: e2e_openai_endpoints:
machine: machine:
image: ubuntu-2204:2023.10.1 image: ubuntu-2204:2023.10.1
resource_class: xlarge resource_class: xlarge
@ -1288,7 +1414,7 @@ jobs:
pip install "aiodynamo==23.10.1" pip install "aiodynamo==23.10.1"
pip install "asyncio==3.4.3" pip install "asyncio==3.4.3"
pip install "PyGithub==1.59.1" pip install "PyGithub==1.59.1"
pip install "openai==1.54.0 " pip install "openai==1.66.1"
# Run pytest and generate JUnit XML report # Run pytest and generate JUnit XML report
- run: - run:
name: Build Docker image name: Build Docker image
@ -1350,7 +1476,7 @@ jobs:
command: | command: |
pwd pwd
ls ls
python -m pytest -s -vv tests/openai_misc_endpoints_tests --junitxml=test-results/junit.xml --durations=5 python -m pytest -s -vv tests/openai_endpoints_tests --junitxml=test-results/junit.xml --durations=5
no_output_timeout: 120m no_output_timeout: 120m
# Store test results # Store test results
@ -1410,7 +1536,7 @@ jobs:
pip install "aiodynamo==23.10.1" pip install "aiodynamo==23.10.1"
pip install "asyncio==3.4.3" pip install "asyncio==3.4.3"
pip install "PyGithub==1.59.1" pip install "PyGithub==1.59.1"
pip install "openai==1.54.0 " pip install "openai==1.66.1"
- run: - run:
name: Build Docker image name: Build Docker image
command: docker build -t my-app:latest -f ./docker/Dockerfile.database . command: docker build -t my-app:latest -f ./docker/Dockerfile.database .
@ -1839,7 +1965,7 @@ jobs:
pip install "pytest-asyncio==0.21.1" pip install "pytest-asyncio==0.21.1"
pip install "google-cloud-aiplatform==1.43.0" pip install "google-cloud-aiplatform==1.43.0"
pip install aiohttp pip install aiohttp
pip install "openai==1.54.0 " pip install "openai==1.66.1"
pip install "assemblyai==0.37.0" pip install "assemblyai==0.37.0"
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install "pydantic==2.7.1" pip install "pydantic==2.7.1"
@ -1853,12 +1979,12 @@ jobs:
pip install prisma pip install prisma
pip install fastapi pip install fastapi
pip install jsonschema pip install jsonschema
pip install "httpx==0.24.1" pip install "httpx==0.27.0"
pip install "anyio==3.7.1" pip install "anyio==3.7.1"
pip install "asyncio==3.4.3" pip install "asyncio==3.4.3"
pip install "PyGithub==1.59.1" pip install "PyGithub==1.59.1"
pip install "google-cloud-aiplatform==1.59.0" pip install "google-cloud-aiplatform==1.59.0"
pip install anthropic pip install "anthropic==0.49.0"
# Run pytest and generate JUnit XML report # Run pytest and generate JUnit XML report
- run: - run:
name: Build Docker image name: Build Docker image
@ -1900,11 +2026,44 @@ jobs:
- run: - run:
name: Wait for app to be ready name: Wait for app to be ready
command: dockerize -wait http://localhost:4000 -timeout 5m command: dockerize -wait http://localhost:4000 -timeout 5m
# Add Ruby installation and testing before the existing Node.js and Python tests
- run:
name: Install Ruby and Bundler
command: |
# Import GPG keys first
gpg --keyserver hkp://keyserver.ubuntu.com --recv-keys 409B6B1796C275462A1703113804BB82D39DC0E3 7D2BAF1CF37B13E2069D6956105BD0E739499BDB || {
curl -sSL https://rvm.io/mpapis.asc | gpg --import -
curl -sSL https://rvm.io/pkuczynski.asc | gpg --import -
}
# Install Ruby version manager (RVM)
curl -sSL https://get.rvm.io | bash -s stable
# Source RVM from the correct location
source $HOME/.rvm/scripts/rvm
# Install Ruby 3.2.2
rvm install 3.2.2
rvm use 3.2.2 --default
# Install latest Bundler
gem install bundler
- run:
name: Run Ruby tests
command: |
source $HOME/.rvm/scripts/rvm
cd tests/pass_through_tests/ruby_passthrough_tests
bundle install
bundle exec rspec
no_output_timeout: 30m
# New steps to run Node.js test # New steps to run Node.js test
- run: - run:
name: Install Node.js name: Install Node.js
command: | command: |
export DEBIAN_FRONTEND=noninteractive
curl -fsSL https://deb.nodesource.com/setup_18.x | sudo -E bash - curl -fsSL https://deb.nodesource.com/setup_18.x | sudo -E bash -
sudo apt-get update
sudo apt-get install -y nodejs sudo apt-get install -y nodejs
node --version node --version
npm --version npm --version
@ -1953,7 +2112,7 @@ jobs:
python -m venv venv python -m venv venv
. venv/bin/activate . venv/bin/activate
pip install coverage pip install coverage
coverage combine llm_translation_coverage logging_coverage litellm_router_coverage local_testing_coverage litellm_assistants_api_coverage auth_ui_unit_tests_coverage langfuse_coverage caching_coverage litellm_proxy_unit_tests_coverage image_gen_coverage pass_through_unit_tests_coverage batches_coverage litellm_proxy_security_tests_coverage coverage combine llm_translation_coverage llm_responses_api_coverage logging_coverage litellm_router_coverage local_testing_coverage litellm_assistants_api_coverage auth_ui_unit_tests_coverage langfuse_coverage caching_coverage litellm_proxy_unit_tests_coverage image_gen_coverage pass_through_unit_tests_coverage batches_coverage litellm_proxy_security_tests_coverage
coverage xml coverage xml
- codecov/upload: - codecov/upload:
file: ./coverage.xml file: ./coverage.xml
@ -2017,7 +2176,7 @@ jobs:
circleci step halt circleci step halt
fi fi
- run: - run:
name: Trigger Github Action for new Docker Container + Trigger Stable Release Testing name: Trigger Github Action for new Docker Container + Trigger Load Testing
command: | command: |
echo "Install TOML package." echo "Install TOML package."
python3 -m pip install toml python3 -m pip install toml
@ -2027,9 +2186,9 @@ jobs:
-H "Accept: application/vnd.github.v3+json" \ -H "Accept: application/vnd.github.v3+json" \
-H "Authorization: Bearer $GITHUB_TOKEN" \ -H "Authorization: Bearer $GITHUB_TOKEN" \
"https://api.github.com/repos/BerriAI/litellm/actions/workflows/ghcr_deploy.yml/dispatches" \ "https://api.github.com/repos/BerriAI/litellm/actions/workflows/ghcr_deploy.yml/dispatches" \
-d "{\"ref\":\"main\", \"inputs\":{\"tag\":\"v${VERSION}\", \"commit_hash\":\"$CIRCLE_SHA1\"}}" -d "{\"ref\":\"main\", \"inputs\":{\"tag\":\"v${VERSION}-nightly\", \"commit_hash\":\"$CIRCLE_SHA1\"}}"
echo "triggering stable release server for version ${VERSION} and commit ${CIRCLE_SHA1}" echo "triggering load testing server for version ${VERSION} and commit ${CIRCLE_SHA1}"
curl -X POST "https://proxyloadtester-production.up.railway.app/start/load/test?version=${VERSION}&commit_hash=${CIRCLE_SHA1}" curl -X POST "https://proxyloadtester-production.up.railway.app/start/load/test?version=${VERSION}&commit_hash=${CIRCLE_SHA1}&release_type=nightly"
e2e_ui_testing: e2e_ui_testing:
machine: machine:
@ -2082,7 +2241,7 @@ jobs:
pip install "pytest-retry==1.6.3" pip install "pytest-retry==1.6.3"
pip install "pytest-asyncio==0.21.1" pip install "pytest-asyncio==0.21.1"
pip install aiohttp pip install aiohttp
pip install "openai==1.54.0 " pip install "openai==1.66.1"
python -m pip install --upgrade pip python -m pip install --upgrade pip
pip install "pydantic==2.7.1" pip install "pydantic==2.7.1"
pip install "pytest==7.3.1" pip install "pytest==7.3.1"
@ -2272,7 +2431,7 @@ workflows:
only: only:
- main - main
- /litellm_.*/ - /litellm_.*/
- e2e_openai_misc_endpoints: - e2e_openai_endpoints:
filters: filters:
branches: branches:
only: only:
@ -2314,6 +2473,18 @@ workflows:
only: only:
- main - main
- /litellm_.*/ - /litellm_.*/
- llm_responses_api_testing:
filters:
branches:
only:
- main
- /litellm_.*/
- litellm_mapped_tests:
filters:
branches:
only:
- main
- /litellm_.*/
- batches_testing: - batches_testing:
filters: filters:
branches: branches:
@ -2347,6 +2518,8 @@ workflows:
- upload-coverage: - upload-coverage:
requires: requires:
- llm_translation_testing - llm_translation_testing
- llm_responses_api_testing
- litellm_mapped_tests
- batches_testing - batches_testing
- litellm_utils_testing - litellm_utils_testing
- pass_through_unit_testing - pass_through_unit_testing
@ -2400,10 +2573,12 @@ workflows:
requires: requires:
- local_testing - local_testing
- build_and_test - build_and_test
- e2e_openai_misc_endpoints - e2e_openai_endpoints
- load_testing - load_testing
- test_bad_database_url - test_bad_database_url
- llm_translation_testing - llm_translation_testing
- llm_responses_api_testing
- litellm_mapped_tests
- batches_testing - batches_testing
- litellm_utils_testing - litellm_utils_testing
- pass_through_unit_testing - pass_through_unit_testing

View file

@ -1,5 +1,5 @@
# used by CI/CD testing # used by CI/CD testing
openai==1.54.0 openai==1.66.1
python-dotenv python-dotenv
tiktoken tiktoken
importlib_metadata importlib_metadata

View file

@ -6,6 +6,16 @@
<!-- e.g. "Fixes #000" --> <!-- e.g. "Fixes #000" -->
## Pre-Submission checklist
**Please complete all items before asking a LiteLLM maintainer to review your PR**
- [ ] I have Added testing in the `tests/litellm/` directory, **Adding at least 1 test is a hard requirement** - [see details](https://docs.litellm.ai/docs/extras/contributing_code)
- [ ] I have added a screenshot of my new test passing locally
- [ ] My PR passes all unit tests on (`make test-unit`)[https://docs.litellm.ai/docs/extras/contributing_code]
- [ ] My PR's scope is as isolated as possible, it only solves 1 specific problem
## Type ## Type
<!-- Select the type of Pull Request --> <!-- Select the type of Pull Request -->
@ -20,10 +30,4 @@
## Changes ## Changes
<!-- List of changes -->
## [REQUIRED] Testing - Attach a screenshot of any new tests passing locally
If UI changes, send a screenshot/GIF of working UI fixes
<!-- Test procedure -->

View file

@ -80,7 +80,6 @@ jobs:
permissions: permissions:
contents: read contents: read
packages: write packages: write
#
steps: steps:
- name: Checkout repository - name: Checkout repository
uses: actions/checkout@v4 uses: actions/checkout@v4
@ -112,7 +111,11 @@ jobs:
with: with:
context: . context: .
push: true push: true
tags: ${{ steps.meta.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }}, ${{ steps.meta.outputs.tags }}-${{ github.event.inputs.release_type }} # if a tag is provided, use that, otherwise use the release tag, and if neither is available, use 'latest' tags: |
${{ steps.meta.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }},
${{ steps.meta.outputs.tags }}-${{ github.event.inputs.release_type }}
${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm:main-{1}', env.REGISTRY, github.event.inputs.tag) || '' }},
${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm:main-stable', env.REGISTRY) || '' }}
labels: ${{ steps.meta.outputs.labels }} labels: ${{ steps.meta.outputs.labels }}
platforms: local,linux/amd64,linux/arm64,linux/arm64/v8 platforms: local,linux/amd64,linux/arm64,linux/arm64/v8
@ -151,7 +154,11 @@ jobs:
context: . context: .
file: ./docker/Dockerfile.database file: ./docker/Dockerfile.database
push: true push: true
tags: ${{ steps.meta-database.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }}, ${{ steps.meta-database.outputs.tags }}-${{ github.event.inputs.release_type }} tags: |
${{ steps.meta-database.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }},
${{ steps.meta-database.outputs.tags }}-${{ github.event.inputs.release_type }}
${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-database:main-{1}', env.REGISTRY, github.event.inputs.tag) || '' }},
${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-database:main-stable', env.REGISTRY) || '' }}
labels: ${{ steps.meta-database.outputs.labels }} labels: ${{ steps.meta-database.outputs.labels }}
platforms: local,linux/amd64,linux/arm64,linux/arm64/v8 platforms: local,linux/amd64,linux/arm64,linux/arm64/v8
@ -190,7 +197,11 @@ jobs:
context: . context: .
file: ./docker/Dockerfile.non_root file: ./docker/Dockerfile.non_root
push: true push: true
tags: ${{ steps.meta-non_root.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }}, ${{ steps.meta-non_root.outputs.tags }}-${{ github.event.inputs.release_type }} tags: |
${{ steps.meta-non_root.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }},
${{ steps.meta-non_root.outputs.tags }}-${{ github.event.inputs.release_type }}
${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-non_root:main-{1}', env.REGISTRY, github.event.inputs.tag) || '' }},
${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-non_root:main-stable', env.REGISTRY) || '' }}
labels: ${{ steps.meta-non_root.outputs.labels }} labels: ${{ steps.meta-non_root.outputs.labels }}
platforms: local,linux/amd64,linux/arm64,linux/arm64/v8 platforms: local,linux/amd64,linux/arm64,linux/arm64/v8
@ -229,7 +240,11 @@ jobs:
context: . context: .
file: ./litellm-js/spend-logs/Dockerfile file: ./litellm-js/spend-logs/Dockerfile
push: true push: true
tags: ${{ steps.meta-spend-logs.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }}, ${{ steps.meta-spend-logs.outputs.tags }}-${{ github.event.inputs.release_type }} tags: |
${{ steps.meta-spend-logs.outputs.tags }}-${{ github.event.inputs.tag || 'latest' }},
${{ steps.meta-spend-logs.outputs.tags }}-${{ github.event.inputs.release_type }}
${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-spend_logs:main-{1}', env.REGISTRY, github.event.inputs.tag) || '' }},
${{ github.event.inputs.release_type == 'stable' && format('{0}/berriai/litellm-spend_logs:main-stable', env.REGISTRY) || '' }}
platforms: local,linux/amd64,linux/arm64,linux/arm64/v8 platforms: local,linux/amd64,linux/arm64,linux/arm64/v8
build-and-push-helm-chart: build-and-push-helm-chart:

27
.github/workflows/helm_unit_test.yml vendored Normal file
View file

@ -0,0 +1,27 @@
name: Helm unit test
on:
pull_request:
push:
branches:
- main
jobs:
unit-test:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v2
- name: Set up Helm 3.11.1
uses: azure/setup-helm@v1
with:
version: '3.11.1'
- name: Install Helm Unit Test Plugin
run: |
helm plugin install https://github.com/helm-unittest/helm-unittest --version v0.4.4
- name: Run unit tests
run:
helm unittest -f 'tests/*.yaml' deploy/charts/litellm-helm

View file

@ -54,27 +54,29 @@ def interpret_results(csv_file):
def _get_docker_run_command_stable_release(release_version): def _get_docker_run_command_stable_release(release_version):
return f""" return f"""
\n\n \n\n
## Docker Run LiteLLM Proxy ## Docker Run LiteLLM Proxy
``` ```
docker run \\ docker run \\
-e STORE_MODEL_IN_DB=True \\ -e STORE_MODEL_IN_DB=True \\
-p 4000:4000 \\ -p 4000:4000 \\
ghcr.io/berriai/litellm_stable_release_branch-{release_version} ghcr.io/berriai/litellm:litellm_stable_release_branch-{release_version}
```
""" """
def _get_docker_run_command(release_version): def _get_docker_run_command(release_version):
return f""" return f"""
\n\n \n\n
## Docker Run LiteLLM Proxy ## Docker Run LiteLLM Proxy
``` ```
docker run \\ docker run \\
-e STORE_MODEL_IN_DB=True \\ -e STORE_MODEL_IN_DB=True \\
-p 4000:4000 \\ -p 4000:4000 \\
ghcr.io/berriai/litellm:main-{release_version} ghcr.io/berriai/litellm:main-{release_version}
```
""" """

View file

@ -8,7 +8,7 @@ class MyUser(HttpUser):
def chat_completion(self): def chat_completion(self):
headers = { headers = {
"Content-Type": "application/json", "Content-Type": "application/json",
"Authorization": "Bearer sk-ZoHqrLIs2-5PzJrqBaviAA", "Authorization": "Bearer sk-8N1tLOOyH8TIxwOLahhIVg",
# Include any additional headers you may need for authentication, etc. # Include any additional headers you may need for authentication, etc.
} }

2
.gitignore vendored
View file

@ -77,3 +77,5 @@ litellm/proxy/_experimental/out/404.html
litellm/proxy/_experimental/out/model_hub.html litellm/proxy/_experimental/out/model_hub.html
.mypy_cache/* .mypy_cache/*
litellm/proxy/application.log litellm/proxy/application.log
tests/llm_translation/vertex_test_account.json
tests/llm_translation/test_vertex_key.json

View file

@ -22,7 +22,7 @@ repos:
rev: 7.0.0 # The version of flake8 to use rev: 7.0.0 # The version of flake8 to use
hooks: hooks:
- id: flake8 - id: flake8
exclude: ^litellm/tests/|^litellm/proxy/tests/ exclude: ^litellm/tests/|^litellm/proxy/tests/|^litellm/tests/litellm/|^tests/litellm/
additional_dependencies: [flake8-print] additional_dependencies: [flake8-print]
files: litellm/.*\.py files: litellm/.*\.py
# - id: flake8 # - id: flake8

32
Makefile Normal file
View file

@ -0,0 +1,32 @@
# LiteLLM Makefile
# Simple Makefile for running tests and basic development tasks
.PHONY: help test test-unit test-integration lint format
# Default target
help:
@echo "Available commands:"
@echo " make test - Run all tests"
@echo " make test-unit - Run unit tests"
@echo " make test-integration - Run integration tests"
@echo " make test-unit-helm - Run helm unit tests"
install-dev:
poetry install --with dev
lint: install-dev
poetry run pip install types-requests types-setuptools types-redis types-PyYAML
cd litellm && poetry run mypy . --ignore-missing-imports
# Testing
test:
poetry run pytest tests/
test-unit:
poetry run pytest tests/litellm/
test-integration:
poetry run pytest tests/ -k "not litellm"
test-unit-helm:
helm unittest -f 'tests/*.yaml' deploy/charts/litellm-helm

View file

@ -40,7 +40,7 @@ LiteLLM manages:
[**Jump to LiteLLM Proxy (LLM Gateway) Docs**](https://github.com/BerriAI/litellm?tab=readme-ov-file#openai-proxy---docs) <br> [**Jump to LiteLLM Proxy (LLM Gateway) Docs**](https://github.com/BerriAI/litellm?tab=readme-ov-file#openai-proxy---docs) <br>
[**Jump to Supported LLM Providers**](https://github.com/BerriAI/litellm?tab=readme-ov-file#supported-providers-docs) [**Jump to Supported LLM Providers**](https://github.com/BerriAI/litellm?tab=readme-ov-file#supported-providers-docs)
🚨 **Stable Release:** Use docker images with the `-stable` tag. These have undergone 12 hour load tests, before being published. 🚨 **Stable Release:** Use docker images with the `-stable` tag. These have undergone 12 hour load tests, before being published. [More information about the release cycle here](https://docs.litellm.ai/docs/proxy/release_cycle)
Support for more providers. Missing a provider or LLM Platform, raise a [feature request](https://github.com/BerriAI/litellm/issues/new?assignees=&labels=enhancement&projects=&template=feature_request.yml&title=%5BFeature%5D%3A+). Support for more providers. Missing a provider or LLM Platform, raise a [feature request](https://github.com/BerriAI/litellm/issues/new?assignees=&labels=enhancement&projects=&template=feature_request.yml&title=%5BFeature%5D%3A+).
@ -64,7 +64,7 @@ import os
## set ENV variables ## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-openai-key" os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["ANTHROPIC_API_KEY"] = "your-cohere-key" os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-key"
messages = [{ "content": "Hello, how are you?","role": "user"}] messages = [{ "content": "Hello, how are you?","role": "user"}]
@ -187,13 +187,13 @@ os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = "" os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["ATHINA_API_KEY"] = "your-athina-api-key" os.environ["ATHINA_API_KEY"] = "your-athina-api-key"
os.environ["OPENAI_API_KEY"] os.environ["OPENAI_API_KEY"] = "your-openai-key"
# set callbacks # set callbacks
litellm.success_callback = ["lunary", "mlflow", "langfuse", "athina", "helicone"] # log input/output to lunary, langfuse, supabase, athina, helicone etc litellm.success_callback = ["lunary", "mlflow", "langfuse", "athina", "helicone"] # log input/output to lunary, langfuse, supabase, athina, helicone etc
#openai call #openai call
response = completion(model="anthropic/claude-3-sonnet-20240229", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}]) response = completion(model="openai/gpt-4o", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
``` ```
# LiteLLM Proxy Server (LLM Gateway) - ([Docs](https://docs.litellm.ai/docs/simple_proxy)) # LiteLLM Proxy Server (LLM Gateway) - ([Docs](https://docs.litellm.ai/docs/simple_proxy))
@ -340,64 +340,7 @@ curl 'http://0.0.0.0:4000/key/generate' \
## Contributing ## Contributing
To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change. Interested in contributing? Contributions to LiteLLM Python SDK, Proxy Server, and contributing LLM integrations are both accepted and highly encouraged! [See our Contribution Guide for more details](https://docs.litellm.ai/docs/extras/contributing_code)
Here's how to modify the repo locally:
Step 1: Clone the repo
```
git clone https://github.com/BerriAI/litellm.git
```
Step 2: Navigate into the project, and install dependencies:
```
cd litellm
poetry install -E extra_proxy -E proxy
```
Step 3: Test your change:
```
cd tests # pwd: Documents/litellm/litellm/tests
poetry run flake8
poetry run pytest .
```
Step 4: Submit a PR with your changes! 🚀
- push your fork to your GitHub repo
- submit a PR from there
### Building LiteLLM Docker Image
Follow these instructions if you want to build / run the LiteLLM Docker Image yourself.
Step 1: Clone the repo
```
git clone https://github.com/BerriAI/litellm.git
```
Step 2: Build the Docker Image
Build using Dockerfile.non_root
```
docker build -f docker/Dockerfile.non_root -t litellm_test_image .
```
Step 3: Run the Docker Image
Make sure config.yaml is present in the root directory. This is your litellm proxy config file.
```
docker run \
-v $(pwd)/proxy_config.yaml:/app/config.yaml \
-e DATABASE_URL="postgresql://xxxxxxxx" \
-e LITELLM_MASTER_KEY="sk-1234" \
-p 4000:4000 \
litellm_test_image \
--config /app/config.yaml --detailed_debug
```
# Enterprise # Enterprise
For companies that need better security, user management and professional support For companies that need better security, user management and professional support

View file

@ -0,0 +1,252 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## LLM Ops Stack - LiteLLM Proxy + Langfuse \n",
"\n",
"This notebook demonstrates how to use LiteLLM Proxy with Langfuse \n",
"- Use LiteLLM Proxy for calling 100+ LLMs in OpenAI format\n",
"- Use Langfuse for viewing request / response traces \n",
"\n",
"\n",
"In this notebook we will setup LiteLLM Proxy to make requests to OpenAI, Anthropic, Bedrock and automatically log traces to Langfuse."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Setup LiteLLM Proxy\n",
"\n",
"### 1.1 Define .env variables \n",
"Define .env variables on the container that litellm proxy is running on.\n",
"```bash\n",
"## LLM API Keys\n",
"OPENAI_API_KEY=sk-proj-1234567890\n",
"ANTHROPIC_API_KEY=sk-ant-api03-1234567890\n",
"AWS_ACCESS_KEY_ID=1234567890\n",
"AWS_SECRET_ACCESS_KEY=1234567890\n",
"\n",
"## Langfuse Logging \n",
"LANGFUSE_PUBLIC_KEY=\"pk-lf-xxxx9\"\n",
"LANGFUSE_SECRET_KEY=\"sk-lf-xxxx9\"\n",
"LANGFUSE_HOST=\"https://us.cloud.langfuse.com\"\n",
"```\n",
"\n",
"\n",
"### 1.1 Setup LiteLLM Proxy Config yaml \n",
"```yaml\n",
"model_list:\n",
" - model_name: gpt-4o\n",
" litellm_params:\n",
" model: openai/gpt-4o\n",
" api_key: os.environ/OPENAI_API_KEY\n",
" - model_name: claude-3-5-sonnet-20241022\n",
" litellm_params:\n",
" model: anthropic/claude-3-5-sonnet-20241022\n",
" api_key: os.environ/ANTHROPIC_API_KEY\n",
" - model_name: us.amazon.nova-micro-v1:0\n",
" litellm_params:\n",
" model: bedrock/us.amazon.nova-micro-v1:0\n",
" aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID\n",
" aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY\n",
"\n",
"litellm_settings:\n",
" callbacks: [\"langfuse\"]\n",
"\n",
"\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Make LLM Requests to LiteLLM Proxy\n",
"\n",
"Now we will make our first LLM request to LiteLLM Proxy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1 Setup Client Side Variables to point to LiteLLM Proxy\n",
"Set `LITELLM_PROXY_BASE_URL` to the base url of the LiteLLM Proxy and `LITELLM_VIRTUAL_KEY` to the virtual key you want to use for Authentication to LiteLLM Proxy. (Note: In this initial setup you can)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"\n",
"LITELLM_PROXY_BASE_URL=\"http://0.0.0.0:4000\"\n",
"LITELLM_VIRTUAL_KEY=\"sk-oXXRa1xxxxxxxxxxx\""
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletion(id='chatcmpl-B0sq6QkOKNMJ0dwP3x7OoMqk1jZcI', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='Langfuse is a platform designed to monitor, observe, and troubleshoot AI and large language model (LLM) applications. It provides features that help developers gain insights into how their AI systems are performing, make debugging easier, and optimize the deployment of models. Langfuse allows for tracking of model interactions, collecting telemetry, and visualizing data, which is crucial for understanding the behavior of AI models in production environments. This kind of tool is particularly useful for developers working with language models who need to ensure reliability and efficiency in their applications.', refusal=None, role='assistant', audio=None, function_call=None, tool_calls=None))], created=1739550502, model='gpt-4o-2024-08-06', object='chat.completion', service_tier='default', system_fingerprint='fp_523b9b6e5f', usage=CompletionUsage(completion_tokens=109, prompt_tokens=13, total_tokens=122, completion_tokens_details=CompletionTokensDetails(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0), prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0)))"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import openai\n",
"client = openai.OpenAI(\n",
" api_key=LITELLM_VIRTUAL_KEY,\n",
" base_url=LITELLM_PROXY_BASE_URL\n",
")\n",
"\n",
"response = client.chat.completions.create(\n",
" model=\"gpt-4o\",\n",
" messages = [\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"what is Langfuse?\"\n",
" }\n",
" ],\n",
")\n",
"\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.3 View Traces on Langfuse\n",
"LiteLLM will send the request / response, model, tokens (input + output), cost to Langfuse.\n",
"\n",
"![image_description](litellm_proxy_langfuse.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.4 Call Anthropic, Bedrock models \n",
"\n",
"Now we can call `us.amazon.nova-micro-v1:0` and `claude-3-5-sonnet-20241022` models defined on your config.yaml both in the OpenAI request / response format."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletion(id='chatcmpl-7756e509-e61f-4f5e-b5ae-b7a41013522a', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content=\"Langfuse is an observability tool designed specifically for machine learning models and applications built with natural language processing (NLP) and large language models (LLMs). It focuses on providing detailed insights into how these models perform in real-world scenarios. Here are some key features and purposes of Langfuse:\\n\\n1. **Real-time Monitoring**: Langfuse allows developers to monitor the performance of their NLP and LLM applications in real time. This includes tracking the inputs and outputs of the models, as well as any errors or issues that arise during operation.\\n\\n2. **Error Tracking**: It helps in identifying and tracking errors in the models' outputs. By analyzing incorrect or unexpected responses, developers can pinpoint where and why errors occur, facilitating more effective debugging and improvement.\\n\\n3. **Performance Metrics**: Langfuse provides various performance metrics, such as latency, throughput, and error rates. These metrics help developers understand how well their models are performing under different conditions and workloads.\\n\\n4. **Traceability**: It offers detailed traceability of requests and responses, allowing developers to follow the path of a request through the system and see how it is processed by the model at each step.\\n\\n5. **User Feedback Integration**: Langfuse can integrate user feedback to provide context for model outputs. This helps in understanding how real users are interacting with the model and how its outputs align with user expectations.\\n\\n6. **Customizable Dashboards**: Users can create custom dashboards to visualize the data collected by Langfuse. These dashboards can be tailored to highlight the most important metrics and insights for a specific application or team.\\n\\n7. **Alerting and Notifications**: It can set up alerts for specific conditions or errors, notifying developers when something goes wrong or when performance metrics fall outside of acceptable ranges.\\n\\nBy providing comprehensive observability for NLP and LLM applications, Langfuse helps developers to build more reliable, accurate, and user-friendly models and services.\", refusal=None, role='assistant', audio=None, function_call=None, tool_calls=None))], created=1739554005, model='us.amazon.nova-micro-v1:0', object='chat.completion', service_tier=None, system_fingerprint=None, usage=CompletionUsage(completion_tokens=380, prompt_tokens=5, total_tokens=385, completion_tokens_details=None, prompt_tokens_details=None))"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import openai\n",
"client = openai.OpenAI(\n",
" api_key=LITELLM_VIRTUAL_KEY,\n",
" base_url=LITELLM_PROXY_BASE_URL\n",
")\n",
"\n",
"response = client.chat.completions.create(\n",
" model=\"us.amazon.nova-micro-v1:0\",\n",
" messages = [\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"what is Langfuse?\"\n",
" }\n",
" ],\n",
")\n",
"\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Advanced - Set Langfuse Trace ID, Tags, Metadata \n",
"\n",
"Here is an example of how you can set Langfuse specific params on your client side request. See full list of supported langfuse params [here](https://docs.litellm.ai/docs/observability/langfuse_integration)\n",
"\n",
"You can view the logged trace of this request [here](https://us.cloud.langfuse.com/project/clvlhdfat0007vwb74m9lvfvi/traces/567890?timestamp=2025-02-14T17%3A30%3A26.709Z)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ChatCompletion(id='chatcmpl-789babd5-c064-4939-9093-46e4cd2e208a', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content=\"Langfuse is an observability platform designed specifically for monitoring and improving the performance of natural language processing (NLP) models and applications. It provides developers with tools to track, analyze, and optimize how their language models interact with users and handle natural language inputs.\\n\\nHere are some key features and benefits of Langfuse:\\n\\n1. **Real-Time Monitoring**: Langfuse allows developers to monitor their NLP applications in real time. This includes tracking user interactions, model responses, and overall performance metrics.\\n\\n2. **Error Tracking**: It helps in identifying and tracking errors in the model's responses. This can include incorrect, irrelevant, or unsafe outputs.\\n\\n3. **User Feedback Integration**: Langfuse enables the collection of user feedback directly within the platform. This feedback can be used to identify areas for improvement in the model's performance.\\n\\n4. **Performance Metrics**: The platform provides detailed metrics and analytics on model performance, including latency, throughput, and accuracy.\\n\\n5. **Alerts and Notifications**: Developers can set up alerts to notify them of any significant issues or anomalies in model performance.\\n\\n6. **Debugging Tools**: Langfuse offers tools to help developers debug and refine their models by providing insights into how the model processes different types of inputs.\\n\\n7. **Integration with Development Workflows**: It integrates seamlessly with various development environments and CI/CD pipelines, making it easier to incorporate observability into the development process.\\n\\n8. **Customizable Dashboards**: Users can create custom dashboards to visualize the data in a way that best suits their needs.\\n\\nLangfuse aims to help developers build more reliable, accurate, and user-friendly NLP applications by providing them with the tools to observe and improve how their models perform in real-world scenarios.\", refusal=None, role='assistant', audio=None, function_call=None, tool_calls=None))], created=1739554281, model='us.amazon.nova-micro-v1:0', object='chat.completion', service_tier=None, system_fingerprint=None, usage=CompletionUsage(completion_tokens=346, prompt_tokens=5, total_tokens=351, completion_tokens_details=None, prompt_tokens_details=None))"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import openai\n",
"client = openai.OpenAI(\n",
" api_key=LITELLM_VIRTUAL_KEY,\n",
" base_url=LITELLM_PROXY_BASE_URL\n",
")\n",
"\n",
"response = client.chat.completions.create(\n",
" model=\"us.amazon.nova-micro-v1:0\",\n",
" messages = [\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": \"what is Langfuse?\"\n",
" }\n",
" ],\n",
" extra_body={\n",
" \"metadata\": {\n",
" \"generation_id\": \"1234567890\",\n",
" \"trace_id\": \"567890\",\n",
" \"trace_user_id\": \"user_1234567890\",\n",
" \"tags\": [\"tag1\", \"tag2\"]\n",
" }\n",
" }\n",
")\n",
"\n",
"response"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## "
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 308 KiB

View file

@ -18,7 +18,7 @@ type: application
# This is the chart version. This version number should be incremented each time you make changes # This is the chart version. This version number should be incremented each time you make changes
# to the chart and its templates, including the app version. # to the chart and its templates, including the app version.
# Versions are expected to follow Semantic Versioning (https://semver.org/) # Versions are expected to follow Semantic Versioning (https://semver.org/)
version: 0.3.0 version: 0.4.2
# This is the version number of the application being deployed. This version number should be # This is the version number of the application being deployed. This version number should be
# incremented each time you make changes to the application. Versions are not expected to # incremented each time you make changes to the application. Versions are not expected to

View file

@ -22,6 +22,8 @@ If `db.useStackgresOperator` is used (not yet implemented):
| Name | Description | Value | | Name | Description | Value |
| ---------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----- | | ---------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----- |
| `replicaCount` | The number of LiteLLM Proxy pods to be deployed | `1` | | `replicaCount` | The number of LiteLLM Proxy pods to be deployed | `1` |
| `masterkeySecretName` | The name of the Kubernetes Secret that contains the Master API Key for LiteLLM. If not specified, use the generated secret name. | N/A |
| `masterkeySecretKey` | The key within the Kubernetes Secret that contains the Master API Key for LiteLLM. If not specified, use `masterkey` as the key. | N/A |
| `masterkey` | The Master API Key for LiteLLM. If not specified, a random key is generated. | N/A | | `masterkey` | The Master API Key for LiteLLM. If not specified, a random key is generated. | N/A |
| `environmentSecrets` | An optional array of Secret object names. The keys and values in these secrets will be presented to the LiteLLM proxy pod as environment variables. See below for an example Secret object. | `[]` | | `environmentSecrets` | An optional array of Secret object names. The keys and values in these secrets will be presented to the LiteLLM proxy pod as environment variables. See below for an example Secret object. | `[]` |
| `environmentConfigMaps` | An optional array of ConfigMap object names. The keys and values in these configmaps will be presented to the LiteLLM proxy pod as environment variables. See below for an example Secret object. | `[]` | | `environmentConfigMaps` | An optional array of ConfigMap object names. The keys and values in these configmaps will be presented to the LiteLLM proxy pod as environment variables. See below for an example Secret object. | `[]` |

View file

@ -78,8 +78,8 @@ spec:
- name: PROXY_MASTER_KEY - name: PROXY_MASTER_KEY
valueFrom: valueFrom:
secretKeyRef: secretKeyRef:
name: {{ include "litellm.fullname" . }}-masterkey name: {{ .Values.masterkeySecretName | default (printf "%s-masterkey" (include "litellm.fullname" .)) }}
key: masterkey key: {{ .Values.masterkeySecretKey | default "masterkey" }}
{{- if .Values.redis.enabled }} {{- if .Values.redis.enabled }}
- name: REDIS_HOST - name: REDIS_HOST
value: {{ include "litellm.redis.serviceName" . }} value: {{ include "litellm.redis.serviceName" . }}

View file

@ -48,6 +48,23 @@ spec:
{{- end }} {{- end }}
- name: DISABLE_SCHEMA_UPDATE - name: DISABLE_SCHEMA_UPDATE
value: "false" # always run the migration from the Helm PreSync hook, override the value set value: "false" # always run the migration from the Helm PreSync hook, override the value set
{{- with .Values.volumeMounts }}
volumeMounts:
{{- toYaml . | nindent 12 }}
{{- end }}
{{- with .Values.volumes }}
volumes:
{{- toYaml . | nindent 8 }}
{{- end }}
restartPolicy: OnFailure restartPolicy: OnFailure
{{- with .Values.affinity }}
affinity:
{{- toYaml . | nindent 8 }}
{{- end }}
{{- with .Values.tolerations }}
tolerations:
{{- toYaml . | nindent 8 }}
{{- end }}
ttlSecondsAfterFinished: {{ .Values.migrationJob.ttlSecondsAfterFinished }}
backoffLimit: {{ .Values.migrationJob.backoffLimit }} backoffLimit: {{ .Values.migrationJob.backoffLimit }}
{{- end }} {{- end }}

View file

@ -1,3 +1,4 @@
{{- if not .Values.masterkeySecretName }}
{{ $masterkey := (.Values.masterkey | default (randAlphaNum 17)) }} {{ $masterkey := (.Values.masterkey | default (randAlphaNum 17)) }}
apiVersion: v1 apiVersion: v1
kind: Secret kind: Secret
@ -6,3 +7,4 @@ metadata:
data: data:
masterkey: {{ $masterkey | b64enc }} masterkey: {{ $masterkey | b64enc }}
type: Opaque type: Opaque
{{- end }}

View file

@ -0,0 +1,82 @@
suite: test deployment
templates:
- deployment.yaml
- configmap-litellm.yaml
tests:
- it: should work
template: deployment.yaml
set:
image.tag: test
asserts:
- isKind:
of: Deployment
- matchRegex:
path: metadata.name
pattern: -litellm$
- equal:
path: spec.template.spec.containers[0].image
value: ghcr.io/berriai/litellm-database:test
- it: should work with tolerations
template: deployment.yaml
set:
tolerations:
- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule
asserts:
- equal:
path: spec.template.spec.tolerations[0].key
value: node-role.kubernetes.io/master
- equal:
path: spec.template.spec.tolerations[0].operator
value: Exists
- it: should work with affinity
template: deployment.yaml
set:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: topology.kubernetes.io/zone
operator: In
values:
- antarctica-east1
asserts:
- equal:
path: spec.template.spec.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms[0].matchExpressions[0].key
value: topology.kubernetes.io/zone
- equal:
path: spec.template.spec.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms[0].matchExpressions[0].operator
value: In
- equal:
path: spec.template.spec.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms[0].matchExpressions[0].values[0]
value: antarctica-east1
- it: should work without masterkeySecretName or masterkeySecretKey
template: deployment.yaml
set:
masterkeySecretName: ""
masterkeySecretKey: ""
asserts:
- contains:
path: spec.template.spec.containers[0].env
content:
name: PROXY_MASTER_KEY
valueFrom:
secretKeyRef:
name: RELEASE-NAME-litellm-masterkey
key: masterkey
- it: should work with masterkeySecretName and masterkeySecretKey
template: deployment.yaml
set:
masterkeySecretName: my-secret
masterkeySecretKey: my-key
asserts:
- contains:
path: spec.template.spec.containers[0].env
content:
name: PROXY_MASTER_KEY
valueFrom:
secretKeyRef:
name: my-secret
key: my-key

View file

@ -0,0 +1,18 @@
suite: test masterkey secret
templates:
- secret-masterkey.yaml
tests:
- it: should create a secret if masterkeySecretName is not set
template: secret-masterkey.yaml
set:
masterkeySecretName: ""
asserts:
- isKind:
of: Secret
- it: should not create a secret if masterkeySecretName is set
template: secret-masterkey.yaml
set:
masterkeySecretName: my-secret
asserts:
- hasDocuments:
count: 0

View file

@ -75,6 +75,12 @@ ingress:
# masterkey: changeit # masterkey: changeit
# if set, use this secret for the master key; otherwise, autogenerate a new one
masterkeySecretName: ""
# if set, use this secret key for the master key; otherwise, use the default key
masterkeySecretKey: ""
# The elements within proxy_config are rendered as config.yaml for the proxy # The elements within proxy_config are rendered as config.yaml for the proxy
# Examples: https://github.com/BerriAI/litellm/tree/main/litellm/proxy/example_config_yaml # Examples: https://github.com/BerriAI/litellm/tree/main/litellm/proxy/example_config_yaml
# Reference: https://docs.litellm.ai/docs/proxy/configs # Reference: https://docs.litellm.ai/docs/proxy/configs
@ -187,6 +193,7 @@ migrationJob:
backoffLimit: 4 # Backoff limit for Job restarts backoffLimit: 4 # Backoff limit for Job restarts
disableSchemaUpdate: false # Skip schema migrations for specific environments. When True, the job will exit with code 0. disableSchemaUpdate: false # Skip schema migrations for specific environments. When True, the job will exit with code 0.
annotations: {} annotations: {}
ttlSecondsAfterFinished: 120
# Additional environment variables to be added to the deployment # Additional environment variables to be added to the deployment
envVars: { envVars: {

View file

@ -20,10 +20,18 @@ services:
STORE_MODEL_IN_DB: "True" # allows adding models to proxy via UI STORE_MODEL_IN_DB: "True" # allows adding models to proxy via UI
env_file: env_file:
- .env # Load local .env file - .env # Load local .env file
depends_on:
- db # Indicates that this service depends on the 'db' service, ensuring 'db' starts first
healthcheck: # Defines the health check configuration for the container
test: [ "CMD", "curl", "-f", "http://localhost:4000/health/liveliness || exit 1" ] # Command to execute for health check
interval: 30s # Perform health check every 30 seconds
timeout: 10s # Health check command times out after 10 seconds
retries: 3 # Retry up to 3 times if health check fails
start_period: 40s # Wait 40 seconds after container start before beginning health checks
db: db:
image: postgres image: postgres:16
restart: always restart: always
environment: environment:
POSTGRES_DB: litellm POSTGRES_DB: litellm
@ -31,6 +39,8 @@ services:
POSTGRES_PASSWORD: dbpassword9090 POSTGRES_PASSWORD: dbpassword9090
ports: ports:
- "5432:5432" - "5432:5432"
volumes:
- postgres_data:/var/lib/postgresql/data # Persists Postgres data across container restarts
healthcheck: healthcheck:
test: ["CMD-SHELL", "pg_isready -d litellm -U llmproxy"] test: ["CMD-SHELL", "pg_isready -d litellm -U llmproxy"]
interval: 1s interval: 1s
@ -53,6 +63,8 @@ services:
volumes: volumes:
prometheus_data: prometheus_data:
driver: local driver: local
postgres_data:
name: litellm_postgres_data # Named volume for Postgres data persistence
# ...rest of your docker-compose config if any # ...rest of your docker-compose config if any

View file

@ -11,9 +11,7 @@ FROM $LITELLM_BUILD_IMAGE AS builder
WORKDIR /app WORKDIR /app
# Install build dependencies # Install build dependencies
RUN apk update && \ RUN apk add --no-cache gcc python3-dev musl-dev
apk add --no-cache gcc python3-dev musl-dev && \
rm -rf /var/cache/apk/*
RUN pip install --upgrade pip && \ RUN pip install --upgrade pip && \
pip install build pip install build

View file

@ -0,0 +1,92 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# /v1/messages [BETA]
LiteLLM provides a BETA endpoint in the spec of Anthropic's `/v1/messages` endpoint.
This currently just supports the Anthropic API.
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ✅ | |
| Logging | ✅ | works across all integrations |
| End-user Tracking | ✅ | |
| Streaming | ✅ | |
| Fallbacks | ✅ | between anthropic models |
| Loadbalancing | ✅ | between anthropic models |
Planned improvement:
- Vertex AI Anthropic support
- Bedrock Anthropic support
## Usage
<Tabs>
<TabItem label="PROXY" value="proxy">
1. Setup config.yaml
```yaml
model_list:
- model_name: anthropic-claude
litellm_params:
model: claude-3-7-sonnet-latest
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl -L -X POST 'http://0.0.0.0:4000/v1/messages' \
-H 'content-type: application/json' \
-H 'x-api-key: $LITELLM_API_KEY' \
-H 'anthropic-version: 2023-06-01' \
-d '{
"model": "anthropic-claude",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "List 5 important events in the XIX century"
}
]
}
],
"max_tokens": 4096
}'
```
</TabItem>
<TabItem value="sdk" label="SDK">
```python
from litellm.llms.anthropic.experimental_pass_through.messages.handler import anthropic_messages
import asyncio
import os
# set env
os.environ["ANTHROPIC_API_KEY"] = "my-api-key"
messages = [{"role": "user", "content": "Hello, can you tell me a short joke?"}]
# Call the handler
async def call():
response = await anthropic_messages(
messages=messages,
api_key=api_key,
model="claude-3-haiku-20240307",
max_tokens=100,
)
asyncio.run(call())
```
</TabItem>
</Tabs>

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# Assistants API # /assistants
Covers Threads, Messages, Assistants. Covers Threads, Messages, Assistants.

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# [BETA] Batches API # /batches
Covers Batches, Files Covers Batches, Files

View file

@ -3,7 +3,13 @@ import TabItem from '@theme/TabItem';
# Prompt Caching # Prompt Caching
For OpenAI + Anthropic + Deepseek, LiteLLM follows the OpenAI prompt caching usage object format: Supported Providers:
- OpenAI (`openai/`)
- Anthropic API (`anthropic/`)
- Bedrock (`bedrock/`, `bedrock/invoke/`, `bedrock/converse`) ([All models bedrock supports prompt caching on](https://docs.aws.amazon.com/bedrock/latest/userguide/prompt-caching.html))
- Deepseek API (`deepseek/`)
For the supported providers, LiteLLM follows the OpenAI prompt caching usage object format:
```bash ```bash
"usage": { "usage": {

View file

@ -46,7 +46,7 @@ from litellm import completion
fallback_dict = {"gpt-3.5-turbo": "gpt-3.5-turbo-16k"} fallback_dict = {"gpt-3.5-turbo": "gpt-3.5-turbo-16k"}
messages = [{"content": "how does a court case get to the Supreme Court?" * 500, "role": "user"}] messages = [{"content": "how does a court case get to the Supreme Court?" * 500, "role": "user"}]
completion(model="gpt-3.5-turbo", messages=messages, context_window_fallback_dict=ctx_window_fallback_dict) completion(model="gpt-3.5-turbo", messages=messages, context_window_fallback_dict=fallback_dict)
``` ```
### Fallbacks - Switch Models/API Keys/API Bases (SDK) ### Fallbacks - Switch Models/API Keys/API Bases (SDK)

View file

@ -190,3 +190,137 @@ Expected Response
</TabItem> </TabItem>
</Tabs> </Tabs>
## Explicitly specify image type
If you have images without a mime-type, or if litellm is incorrectly inferring the mime type of your image (e.g. calling `gs://` url's with vertex ai), you can set this explicity via the `format` param.
```python
"image_url": {
"url": "gs://my-gs-image",
"format": "image/jpeg"
}
```
LiteLLM will use this for any API endpoint, which supports specifying mime-type (e.g. anthropic/bedrock/vertex ai).
For others (e.g. openai), it will be ignored.
<Tabs>
<TabItem label="SDK" value="sdk">
```python
import os
from litellm import completion
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
# openai call
response = completion(
model = "claude-3-7-sonnet-latest",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
"format": "image/jpeg"
}
}
]
}
],
)
```
</TabItem>
<TabItem label="PROXY" value="proxy">
1. Define vision models on config.yaml
```yaml
model_list:
- model_name: gpt-4-vision-preview # OpenAI gpt-4-vision-preview
litellm_params:
model: openai/gpt-4-vision-preview
api_key: os.environ/OPENAI_API_KEY
- model_name: llava-hf # Custom OpenAI compatible model
litellm_params:
model: openai/llava-hf/llava-v1.6-vicuna-7b-hf
api_base: http://localhost:8000
api_key: fake-key
model_info:
supports_vision: True # set supports_vision to True so /model/info returns this attribute as True
```
2. Run proxy server
```bash
litellm --config config.yaml
```
3. Test it using the OpenAI Python SDK
```python
import os
from openai import OpenAI
client = OpenAI(
api_key="sk-1234", # your litellm proxy api key
)
response = client.chat.completions.create(
model = "gpt-4-vision-preview", # use model="llava-hf" to test your custom OpenAI endpoint
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
"format": "image/jpeg"
}
}
]
}
],
)
```
</TabItem>
</Tabs>
## Spec
```
"image_url": str
OR
"image_url": {
"url": "url OR base64 encoded str",
"detail": "openai-only param",
"format": "specify mime-type of image"
}
```

View file

@ -46,7 +46,7 @@ For security inquiries, please contact us at support@berri.ai
|-------------------|-------------------------------------------------------------------------------------------------| |-------------------|-------------------------------------------------------------------------------------------------|
| SOC 2 Type I | Certified. Report available upon request on Enterprise plan. | | SOC 2 Type I | Certified. Report available upon request on Enterprise plan. |
| SOC 2 Type II | In progress. Certificate available by April 15th, 2025 | | SOC 2 Type II | In progress. Certificate available by April 15th, 2025 |
| ISO27001 | In progress. Certificate available by February 7th, 2025 | | ISO 27001 | Certified. Report available upon request on Enterprise |
## Supported Data Regions for LiteLLM Cloud ## Supported Data Regions for LiteLLM Cloud
@ -137,7 +137,7 @@ Point of contact email address for general security-related questions: krrish@be
Has the Vendor been audited / certified? Has the Vendor been audited / certified?
- SOC 2 Type I. Certified. Report available upon request on Enterprise plan. - SOC 2 Type I. Certified. Report available upon request on Enterprise plan.
- SOC 2 Type II. In progress. Certificate available by April 15th, 2025. - SOC 2 Type II. In progress. Certificate available by April 15th, 2025.
- ISO27001. In progress. Certificate available by February 7th, 2025. - ISO 27001. Certified. Report available upon request on Enterprise plan.
Has an information security management system been implemented? Has an information security management system been implemented?
- Yes - [CodeQL](https://codeql.github.com/) and a comprehensive ISMS covering multiple security domains. - Yes - [CodeQL](https://codeql.github.com/) and a comprehensive ISMS covering multiple security domains.

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# Embeddings # /embeddings
## Quick Start ## Quick Start
```python ```python

View file

@ -0,0 +1,106 @@
# Contributing Code
## **Checklist before submitting a PR**
Here are the core requirements for any PR submitted to LiteLLM
- [ ] Add testing, **Adding at least 1 test is a hard requirement** - [see details](#2-adding-testing-to-your-pr)
- [ ] Ensure your PR passes the following tests:
- [ ] [Unit Tests](#3-running-unit-tests)
- [ ] [Formatting / Linting Tests](#35-running-linting-tests)
- [ ] Keep scope as isolated as possible. As a general rule, your changes should address 1 specific problem at a time
## Quick start
## 1. Setup your local dev environment
Here's how to modify the repo locally:
Step 1: Clone the repo
```shell
git clone https://github.com/BerriAI/litellm.git
```
Step 2: Install dev dependencies:
```shell
poetry install --with dev --extras proxy
```
That's it, your local dev environment is ready!
## 2. Adding Testing to your PR
- Add your test to the [`tests/litellm/` directory](https://github.com/BerriAI/litellm/tree/main/tests/litellm)
- This directory 1:1 maps the the `litellm/` directory, and can only contain mocked tests.
- Do not add real llm api calls to this directory.
### 2.1 File Naming Convention for `tests/litellm/`
The `tests/litellm/` directory follows the same directory structure as `litellm/`.
- `litellm/proxy/test_caching_routes.py` maps to `litellm/proxy/caching_routes.py`
- `test_{filename}.py` maps to `litellm/{filename}.py`
## 3. Running Unit Tests
run the following command on the root of the litellm directory
```shell
make test-unit
```
## 3.5 Running Linting Tests
run the following command on the root of the litellm directory
```shell
make lint
```
LiteLLM uses mypy for linting. On ci/cd we also run `black` for formatting.
## 4. Submit a PR with your changes!
- push your fork to your GitHub repo
- submit a PR from there
## Advanced
### Building LiteLLM Docker Image
Some people might want to build the LiteLLM docker image themselves. Follow these instructions if you want to build / run the LiteLLM Docker Image yourself.
Step 1: Clone the repo
```shell
git clone https://github.com/BerriAI/litellm.git
```
Step 2: Build the Docker Image
Build using Dockerfile.non_root
```shell
docker build -f docker/Dockerfile.non_root -t litellm_test_image .
```
Step 3: Run the Docker Image
Make sure config.yaml is present in the root directory. This is your litellm proxy config file.
```shell
docker run \
-v $(pwd)/proxy_config.yaml:/app/config.yaml \
-e DATABASE_URL="postgresql://xxxxxxxx" \
-e LITELLM_MASTER_KEY="sk-1234" \
-p 4000:4000 \
litellm_test_image \
--config /app/config.yaml --detailed_debug
```

View file

@ -2,7 +2,7 @@
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
# Files API # /files
Files are used to upload documents that can be used with features like Assistants, Fine-tuning, and Batch API. Files are used to upload documents that can be used with features like Assistants, Fine-tuning, and Batch API.

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# [Beta] Fine-tuning API # /fine_tuning
:::info :::info

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# Moderation # /moderations
### Usage ### Usage

View file

@ -19,6 +19,7 @@ Make an account on [Arize AI](https://app.arize.com/auth/login)
## Quick Start ## Quick Start
Use just 2 lines of code, to instantly log your responses **across all providers** with arize Use just 2 lines of code, to instantly log your responses **across all providers** with arize
You can also use the instrumentor option instead of the callback, which you can find [here](https://docs.arize.com/arize/llm-tracing/tracing-integrations-auto/litellm).
```python ```python
litellm.callbacks = ["arize"] litellm.callbacks = ["arize"]

View file

@ -78,7 +78,10 @@ Following are the allowed fields in metadata, their types, and their description
* `context: Optional[Union[dict, str]]` - This is the context used as information for the prompt. For RAG applications, this is the "retrieved" data. You may log context as a string or as an object (dictionary). * `context: Optional[Union[dict, str]]` - This is the context used as information for the prompt. For RAG applications, this is the "retrieved" data. You may log context as a string or as an object (dictionary).
* `expected_response: Optional[str]` - This is the reference response to compare against for evaluation purposes. This is useful for segmenting inference calls by expected response. * `expected_response: Optional[str]` - This is the reference response to compare against for evaluation purposes. This is useful for segmenting inference calls by expected response.
* `user_query: Optional[str]` - This is the user's query. For conversational applications, this is the user's last message. * `user_query: Optional[str]` - This is the user's query. For conversational applications, this is the user's last message.
* `tags: Optional[list]` - This is a list of tags. This is useful for segmenting inference calls by tags.
* `user_feedback: Optional[str]` - The end users feedback.
* `model_options: Optional[dict]` - This is a dictionary of model options. This is useful for getting insights into how model behavior affects your end users.
* `custom_attributes: Optional[dict]` - This is a dictionary of custom attributes. This is useful for additional information about the inference.
## Using a self hosted deployment of Athina ## Using a self hosted deployment of Athina

View file

@ -0,0 +1,75 @@
import Image from '@theme/IdealImage';
# Phoenix OSS
Open source tracing and evaluation platform
:::tip
This is community maintained, Please make an issue if you run into a bug
https://github.com/BerriAI/litellm
:::
## Pre-Requisites
Make an account on [Phoenix OSS](https://phoenix.arize.com)
OR self-host your own instance of [Phoenix](https://docs.arize.com/phoenix/deployment)
## Quick Start
Use just 2 lines of code, to instantly log your responses **across all providers** with Phoenix
You can also use the instrumentor option instead of the callback, which you can find [here](https://docs.arize.com/phoenix/tracing/integrations-tracing/litellm).
```python
litellm.callbacks = ["arize_phoenix"]
```
```python
import litellm
import os
os.environ["PHOENIX_API_KEY"] = "" # Necessary only using Phoenix Cloud
os.environ["PHOENIX_COLLECTOR_HTTP_ENDPOINT"] = "" # The URL of your Phoenix OSS instance
# This defaults to https://app.phoenix.arize.com/v1/traces for Phoenix Cloud
# LLM API Keys
os.environ['OPENAI_API_KEY']=""
# set arize as a callback, litellm will send the data to arize
litellm.callbacks = ["phoenix"]
# openai call
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "Hi 👋 - i'm openai"}
]
)
```
### Using with LiteLLM Proxy
```yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
litellm_settings:
callbacks: ["arize_phoenix"]
environment_variables:
PHOENIX_API_KEY: "d0*****"
PHOENIX_COLLECTOR_ENDPOINT: "https://app.phoenix.arize.com/v1/traces" # OPTIONAL, for setting the GRPC endpoint
PHOENIX_COLLECTOR_HTTP_ENDPOINT: "https://app.phoenix.arize.com/v1/traces" # OPTIONAL, for setting the HTTP endpoint
```
## Support & Talk to Founders
- [Schedule Demo 👋](https://calendly.com/d/4mp-gd3-k5k/berriai-1-1-onboarding-litellm-hosted-version)
- [Community Discord 💭](https://discord.gg/wuPM9dRgDw)
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai

View file

@ -0,0 +1,95 @@
# OpenAI Passthrough
Pass-through endpoints for `/openai`
## Overview
| Feature | Supported | Notes |
|-------|-------|-------|
| Cost Tracking | ❌ | Not supported |
| Logging | ✅ | Works across all integrations |
| Streaming | ✅ | Fully supported |
### When to use this?
- For 90% of your use cases, you should use the [native LiteLLM OpenAI Integration](https://docs.litellm.ai/docs/providers/openai) (`/chat/completions`, `/embeddings`, `/completions`, `/images`, `/batches`, etc.)
- Use this passthrough to call less popular or newer OpenAI endpoints that LiteLLM doesn't fully support yet, such as `/assistants`, `/threads`, `/vector_stores`
Simply replace `https://api.openai.com` with `LITELLM_PROXY_BASE_URL/openai`
## Usage Examples
### Assistants API
#### Create OpenAI Client
Make sure you do the following:
- Point `base_url` to your `LITELLM_PROXY_BASE_URL/openai`
- Use your `LITELLM_API_KEY` as the `api_key`
```python
import openai
client = openai.OpenAI(
base_url="http://0.0.0.0:4000/openai", # <your-proxy-url>/openai
api_key="sk-anything" # <your-proxy-api-key>
)
```
#### Create an Assistant
```python
# Create an assistant
assistant = client.beta.assistants.create(
name="Math Tutor",
instructions="You are a math tutor. Help solve equations.",
model="gpt-4o",
)
```
#### Create a Thread
```python
# Create a thread
thread = client.beta.threads.create()
```
#### Add a Message to the Thread
```python
# Add a message
message = client.beta.threads.messages.create(
thread_id=thread.id,
role="user",
content="Solve 3x + 11 = 14",
)
```
#### Run the Assistant
```python
# Create a run to get the assistant's response
run = client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant.id,
)
# Check run status
run_status = client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id
)
```
#### Retrieve Messages
```python
# List messages after the run completes
messages = client.beta.threads.messages.list(
thread_id=thread.id
)
```
#### Delete the Assistant
```python
# Delete the assistant when done
client.beta.assistants.delete(assistant.id)
```

View file

@ -0,0 +1,14 @@
# 🐕 Elroy
Elroy is a scriptable AI assistant that remembers and sets goals.
Interact through the command line, share memories via MCP, or build your own tools using Python.
[![Static Badge][github-shield]][github-url]
[![Discord][discord-shield]][discord-url]
[github-shield]: https://img.shields.io/badge/Github-repo-white?logo=github
[github-url]: https://github.com/elroy-bot/elroy
[discord-shield]:https://img.shields.io/discord/1200684659277832293?color=7289DA&label=Discord&logo=discord&logoColor=white
[discord-url]: https://discord.gg/5PJUY4eMce

View file

@ -0,0 +1,5 @@
PDL - A YAML-based approach to prompt programming
Github: https://github.com/IBM/prompt-declaration-language
PDL is a declarative approach to prompt programming, helping users to accumulate messages implicitly, with support for model chaining and tool use.

View file

@ -0,0 +1,9 @@
# pgai
[pgai](https://github.com/timescale/pgai) is a suite of tools to develop RAG, semantic search, and other AI applications more easily with PostgreSQL.
If you don't know what pgai is yet check out the [README](https://github.com/timescale/pgai)!
If you're already familiar with pgai, you can find litellm specific docs here:
- Litellm for [model calling](https://github.com/timescale/pgai/blob/main/docs/model_calling/litellm.md) in pgai
- Use the [litellm provider](https://github.com/timescale/pgai/blob/main/docs/vectorizer/api-reference.md#aiembedding_litellm) to automatically create embeddings for your data via the pgai vectorizer.

View file

@ -819,6 +819,114 @@ resp = litellm.completion(
print(f"\nResponse: {resp}") print(f"\nResponse: {resp}")
``` ```
## Usage - Thinking / `reasoning_content`
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
resp = completion(
model="anthropic/claude-3-7-sonnet-20250219",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
- model_name: claude-3-7-sonnet-20250219
litellm_params:
model: anthropic/claude-3-7-sonnet-20250219
api_key: os.environ/ANTHROPIC_API_KEY
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "claude-3-7-sonnet-20250219",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
**Expected Response**
```python
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
provider_specific_fields={
'citations': None,
'thinking_blocks': [
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6...'
}
]
}
),
thinking_blocks=[
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6AGB...'
}
],
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
```
## **Passing Extra Headers to Anthropic API** ## **Passing Extra Headers to Anthropic API**
Pass `extra_headers: dict` to `litellm.completion` Pass `extra_headers: dict` to `litellm.completion`
@ -1135,3 +1243,4 @@ curl http://0.0.0.0:4000/v1/chat/completions \
</TabItem> </TabItem>
</Tabs> </Tabs>

File diff suppressed because it is too large Load diff

View file

@ -23,14 +23,16 @@ import os
os.environ['CEREBRAS_API_KEY'] = "" os.environ['CEREBRAS_API_KEY'] = ""
response = completion( response = completion(
model="cerebras/meta/llama3-70b-instruct", model="cerebras/llama3-70b-instruct",
messages=[ messages=[
{ {
"role": "user", "role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?", "content": "What's the weather like in Boston today in Fahrenheit? (Write in JSON)",
} }
], ],
max_tokens=10, max_tokens=10,
# The prompt should include JSON if 'json_object' is selected; otherwise, you will get error code 400.
response_format={ "type": "json_object" }, response_format={ "type": "json_object" },
seed=123, seed=123,
stop=["\n\n"], stop=["\n\n"],
@ -50,15 +52,17 @@ import os
os.environ['CEREBRAS_API_KEY'] = "" os.environ['CEREBRAS_API_KEY'] = ""
response = completion( response = completion(
model="cerebras/meta/llama3-70b-instruct", model="cerebras/llama3-70b-instruct",
messages=[ messages=[
{ {
"role": "user", "role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?", "content": "What's the weather like in Boston today in Fahrenheit? (Write in JSON)",
} }
], ],
stream=True, stream=True,
max_tokens=10, max_tokens=10,
# The prompt should include JSON if 'json_object' is selected; otherwise, you will get error code 400.
response_format={ "type": "json_object" }, response_format={ "type": "json_object" },
seed=123, seed=123,
stop=["\n\n"], stop=["\n\n"],

View file

@ -108,7 +108,7 @@ response = embedding(
### Usage ### Usage
LiteLLM supports the v1 and v2 clients for Cohere rerank. By default, the `rerank` endpoint uses the v2 client, but you can specify the v1 client by explicitly calling `v1/rerank`
<Tabs> <Tabs>
<TabItem value="sdk" label="LiteLLM SDK Usage"> <TabItem value="sdk" label="LiteLLM SDK Usage">

View file

@ -1,3 +1,6 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Infinity # Infinity
| Property | Details | | Property | Details |
@ -12,6 +15,9 @@
```python ```python
from litellm import rerank from litellm import rerank
import os
os.environ["INFINITY_API_BASE"] = "http://localhost:8080"
response = rerank( response = rerank(
model="infinity/rerank", model="infinity/rerank",
@ -65,3 +71,114 @@ curl http://0.0.0.0:4000/rerank \
``` ```
## Supported Cohere Rerank API Params
| Param | Type | Description |
|-------|-------|-------|
| `query` | `str` | The query to rerank the documents against |
| `documents` | `list[str]` | The documents to rerank |
| `top_n` | `int` | The number of documents to return |
| `return_documents` | `bool` | Whether to return the documents in the response |
### Usage - Return Documents
<Tabs>
<TabItem value="sdk" label="SDK">
```python
response = rerank(
model="infinity/rerank",
query="What is the capital of France?",
documents=["Paris", "London", "Berlin", "Madrid"],
return_documents=True,
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/rerank \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "custom-infinity-rerank",
"query": "What is the capital of France?",
"documents": [
"Paris",
"London",
"Berlin",
"Madrid"
],
"return_documents": True,
}'
```
</TabItem>
</Tabs>
## Pass Provider-specific Params
Any unmapped params will be passed to the provider as-is.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import rerank
import os
os.environ["INFINITY_API_BASE"] = "http://localhost:8080"
response = rerank(
model="infinity/rerank",
query="What is the capital of France?",
documents=["Paris", "London", "Berlin", "Madrid"],
raw_scores=True, # 👈 PROVIDER-SPECIFIC PARAM
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: custom-infinity-rerank
litellm_params:
model: infinity/rerank
api_base: https://localhost:8080
raw_scores: True # 👈 EITHER SET PROVIDER-SPECIFIC PARAMS HERE OR IN REQUEST BODY
```
2. Start litellm
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
```bash
curl http://0.0.0.0:4000/rerank \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "custom-infinity-rerank",
"query": "What is the capital of the United States?",
"documents": [
"Carson City is the capital city of the American state of Nevada.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean. Its capital is Saipan.",
"Washington, D.C. is the capital of the United States.",
"Capital punishment has existed in the United States since before it was a country."
],
"raw_scores": True # 👈 PROVIDER-SPECIFIC PARAM
}'
```
</TabItem>
</Tabs>

View file

@ -3,13 +3,15 @@ import TabItem from '@theme/TabItem';
# LiteLLM Proxy (LLM Gateway) # LiteLLM Proxy (LLM Gateway)
:::tip
[LiteLLM Providers a **self hosted** proxy server (AI Gateway)](../simple_proxy) to call all the LLMs in the OpenAI format | Property | Details |
|-------|-------|
| Description | LiteLLM Proxy is an OpenAI-compatible gateway that allows you to interact with multiple LLM providers through a unified API. Simply use the `litellm_proxy/` prefix before the model name to route your requests through the proxy. |
| Provider Route on LiteLLM | `litellm_proxy/` (add this prefix to the model name, to route any requests to litellm_proxy - e.g. `litellm_proxy/your-model-name`) |
| Setup LiteLLM Gateway | [LiteLLM Gateway ↗](../simple_proxy) |
| Supported Endpoints |`/chat/completions`, `/completions`, `/embeddings`, `/audio/speech`, `/audio/transcriptions`, `/images`, `/rerank` |
:::
**[LiteLLM Proxy](../simple_proxy) is OpenAI compatible**, you just need the `litellm_proxy/` prefix before the model
## Required Variables ## Required Variables
@ -83,7 +85,76 @@ for chunk in response:
print(chunk) print(chunk)
``` ```
## Embeddings
```python
import litellm
response = litellm.embedding(
model="litellm_proxy/your-embedding-model",
input="Hello world",
api_base="your-litellm-proxy-url",
api_key="your-litellm-proxy-api-key"
)
```
## Image Generation
```python
import litellm
response = litellm.image_generation(
model="litellm_proxy/dall-e-3",
prompt="A beautiful sunset over mountains",
api_base="your-litellm-proxy-url",
api_key="your-litellm-proxy-api-key"
)
```
## Audio Transcription
```python
import litellm
response = litellm.transcription(
model="litellm_proxy/whisper-1",
file="your-audio-file",
api_base="your-litellm-proxy-url",
api_key="your-litellm-proxy-api-key"
)
```
## Text to Speech
```python
import litellm
response = litellm.speech(
model="litellm_proxy/tts-1",
input="Hello world",
api_base="your-litellm-proxy-url",
api_key="your-litellm-proxy-api-key"
)
```
## Rerank
```python
import litellm
import litellm
response = litellm.rerank(
model="litellm_proxy/rerank-english-v2.0",
query="What is machine learning?",
documents=[
"Machine learning is a field of study in artificial intelligence",
"Biology is the study of living organisms"
],
api_base="your-litellm-proxy-url",
api_key="your-litellm-proxy-api-key"
)
```
## **Usage with Langchain, LLamaindex, OpenAI Js, Anthropic SDK, Instructor** ## **Usage with Langchain, LLamaindex, OpenAI Js, Anthropic SDK, Instructor**
#### [Follow this doc to see how to use litellm proxy with langchain, llamaindex, anthropic etc](../proxy/user_keys) #### [Follow this doc to see how to use litellm proxy with langchain, llamaindex, anthropic etc](../proxy/user_keys)

View file

@ -64,71 +64,7 @@ All models listed here https://docs.perplexity.ai/docs/model-cards are supported
## Return citations
Perplexity supports returning citations via `return_citations=True`. [Perplexity Docs](https://docs.perplexity.ai/reference/post_chat_completions). Note: Perplexity has this feature in **closed beta**, so you need them to grant you access to get citations from their API.
If perplexity returns citations, LiteLLM will pass it straight through.
:::info :::info
For passing more provider-specific, [go here](../completion/provider_specific_params.md) For more information about passing provider-specific parameters, [go here](../completion/provider_specific_params.md)
::: :::
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
os.environ['PERPLEXITYAI_API_KEY'] = ""
response = completion(
model="perplexity/mistral-7b-instruct",
messages=messages,
return_citations=True
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Add perplexity to config.yaml
```yaml
model_list:
- model_name: "perplexity-model"
litellm_params:
model: "llama-3.1-sonar-small-128k-online"
api_key: os.environ/PERPLEXITY_API_KEY
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl -L -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "perplexity-model",
"messages": [
{
"role": "user",
"content": "Who won the world cup in 2022?"
}
],
"return_citations": true
}'
```
[**Call w/ OpenAI SDK, Langchain, Instructor, etc.**](../proxy/user_keys.md#chatcompletions)
</TabItem>
</Tabs>

View file

@ -2,11 +2,11 @@ import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# Sambanova # Sambanova
https://community.sambanova.ai/t/create-chat-completion-api/ https://cloud.sambanova.ai/
:::tip :::tip
**We support ALL Sambanova models, just set `model=sambanova/<any-model-on-sambanova>` as a prefix when sending litellm requests. For the complete supported model list, visit https://sambanova.ai/technology/models ** **We support ALL Sambanova models, just set `model=sambanova/<any-model-on-sambanova>` as a prefix when sending litellm requests. For the complete supported model list, visit https://docs.sambanova.ai/cloud/docs/get-started/supported-models **
::: :::
@ -27,12 +27,11 @@ response = completion(
messages=[ messages=[
{ {
"role": "user", "role": "user",
"content": "What do you know about sambanova.ai", "content": "What do you know about sambanova.ai. Give your response in json format",
} }
], ],
max_tokens=10, max_tokens=10,
response_format={ "type": "json_object" }, response_format={ "type": "json_object" },
seed=123,
stop=["\n\n"], stop=["\n\n"],
temperature=0.2, temperature=0.2,
top_p=0.9, top_p=0.9,
@ -54,13 +53,12 @@ response = completion(
messages=[ messages=[
{ {
"role": "user", "role": "user",
"content": "What do you know about sambanova.ai", "content": "What do you know about sambanova.ai. Give your response in json format",
} }
], ],
stream=True, stream=True,
max_tokens=10, max_tokens=10,
response_format={ "type": "json_object" }, response_format={ "type": "json_object" },
seed=123,
stop=["\n\n"], stop=["\n\n"],
temperature=0.2, temperature=0.2,
top_p=0.9, top_p=0.9,

View file

@ -0,0 +1,90 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Snowflake
| Property | Details |
|-------|-------|
| Description | The Snowflake Cortex LLM REST API lets you access the COMPLETE function via HTTP POST requests|
| Provider Route on LiteLLM | `snowflake/` |
| Link to Provider Doc | [Snowflake ↗](https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-llm-rest-api) |
| Base URL | [https://{account-id}.snowflakecomputing.com/api/v2/cortex/inference:complete/](https://{account-id}.snowflakecomputing.com/api/v2/cortex/inference:complete) |
| Supported OpenAI Endpoints | `/chat/completions`, `/completions` |
Currently, Snowflake's REST API does not have an endpoint for `snowflake-arctic-embed` embedding models. If you want to use these embedding models with Litellm, you can call them through our Hugging Face provider.
Find the Arctic Embed models [here](https://huggingface.co/collections/Snowflake/arctic-embed-661fd57d50fab5fc314e4c18) on Hugging Face.
## Supported OpenAI Parameters
```
"temperature",
"max_tokens",
"top_p",
"response_format"
```
## API KEYS
Snowflake does have API keys. Instead, you access the Snowflake API with your JWT token and account identifier.
```python
import os
os.environ["SNOWFLAKE_JWT"] = "YOUR JWT"
os.environ["SNOWFLAKE_ACCOUNT_ID"] = "YOUR ACCOUNT IDENTIFIER"
```
## Usage
```python
from litellm import completion
## set ENV variables
os.environ["SNOWFLAKE_JWT"] = "YOUR JWT"
os.environ["SNOWFLAKE_ACCOUNT_ID"] = "YOUR ACCOUNT IDENTIFIER"
# Snowflake call
response = completion(
model="snowflake/mistral-7b",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)
```
## Usage with LiteLLM Proxy
#### 1. Required env variables
```bash
export SNOWFLAKE_JWT=""
export SNOWFLAKE_ACCOUNT_ID = ""
```
#### 2. Start the proxy~
```yaml
model_list:
- model_name: mistral-7b
litellm_params:
model: snowflake/mistral-7b
api_key: YOUR_API_KEY
api_base: https://YOUR-ACCOUNT-ID.snowflakecomputing.com/api/v2/cortex/inference:complete
```
```bash
litellm --config /path/to/config.yaml
```
#### 3. Test it
```shell
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "snowflake/mistral-7b",
"messages": [
{
"role": "user",
"content": "Hello, how are you?"
}
]
}
'
```

View file

@ -405,13 +405,15 @@ If this was your initial VertexAI Grounding code,
```python ```python
import vertexai import vertexai
from vertexai.generative_models import GenerativeModel, GenerationConfig, Tool, grounding
vertexai.init(project=project_id, location="us-central1") vertexai.init(project=project_id, location="us-central1")
model = GenerativeModel("gemini-1.5-flash-001") model = GenerativeModel("gemini-1.5-flash-001")
# Use Google Search for grounding # Use Google Search for grounding
tool = Tool.from_google_search_retrieval(grounding.GoogleSearchRetrieval(disable_attributon=False)) tool = Tool.from_google_search_retrieval(grounding.GoogleSearchRetrieval())
prompt = "When is the next total solar eclipse in US?" prompt = "When is the next total solar eclipse in US?"
response = model.generate_content( response = model.generate_content(
@ -852,6 +854,7 @@ litellm.vertex_location = "us-central1 # Your Location
| claude-3-5-sonnet@20240620 | `completion('vertex_ai/claude-3-5-sonnet@20240620', messages)` | | claude-3-5-sonnet@20240620 | `completion('vertex_ai/claude-3-5-sonnet@20240620', messages)` |
| claude-3-sonnet@20240229 | `completion('vertex_ai/claude-3-sonnet@20240229', messages)` | | claude-3-sonnet@20240229 | `completion('vertex_ai/claude-3-sonnet@20240229', messages)` |
| claude-3-haiku@20240307 | `completion('vertex_ai/claude-3-haiku@20240307', messages)` | | claude-3-haiku@20240307 | `completion('vertex_ai/claude-3-haiku@20240307', messages)` |
| claude-3-7-sonnet@20250219 | `completion('vertex_ai/claude-3-7-sonnet@20250219', messages)` |
### Usage ### Usage
@ -926,6 +929,119 @@ curl --location 'http://0.0.0.0:4000/chat/completions' \
</Tabs> </Tabs>
### Usage - `thinking` / `reasoning_content`
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
resp = completion(
model="vertex_ai/claude-3-7-sonnet-20250219",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
- model_name: claude-3-7-sonnet-20250219
litellm_params:
model: vertex_ai/claude-3-7-sonnet-20250219
vertex_ai_project: "my-test-project"
vertex_ai_location: "us-west-1"
```
2. Start proxy
```bash
litellm --config /path/to/config.yaml
```
3. Test it!
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "claude-3-7-sonnet-20250219",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
**Expected Response**
```python
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
provider_specific_fields={
'citations': None,
'thinking_blocks': [
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6...'
}
]
}
),
thinking_blocks=[
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6AGB...'
}
],
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
```
## Llama 3 API ## Llama 3 API
| Model Name | Function Call | | Model Name | Function Call |
@ -1572,6 +1688,14 @@ assert isinstance(
Pass any file supported by Vertex AI, through LiteLLM. Pass any file supported by Vertex AI, through LiteLLM.
LiteLLM Supports the following image types passed in url
```
Images with Cloud Storage URIs - gs://cloud-samples-data/generative-ai/image/boats.jpeg
Images with direct links - https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg
Videos with Cloud Storage URIs - https://storage.googleapis.com/github-repo/img/gemini/multimodality_usecases_overview/pixel8.mp4
Base64 Encoded Local Images
```
<Tabs> <Tabs>
<TabItem value="sdk" label="SDK"> <TabItem value="sdk" label="SDK">

View file

@ -157,6 +157,98 @@ curl -L -X POST 'http://0.0.0.0:4000/embeddings' \
</TabItem> </TabItem>
</Tabs> </Tabs>
## Send Video URL to VLLM
Example Implementation from VLLM [here](https://github.com/vllm-project/vllm/pull/10020)
There are two ways to send a video url to VLLM:
1. Pass the video url directly
```
{"type": "video_url", "video_url": {"url": video_url}},
```
2. Pass the video data as base64
```
{"type": "video_url", "video_url": {"url": f"data:video/mp4;base64,{video_data_base64}"}}
```
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
response = completion(
model="hosted_vllm/qwen", # pass the vllm model name
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Summarize the following video"
},
{
"type": "video_url",
"video_url": {
"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
}
}
]
}
],
api_base="https://hosted-vllm-api.co")
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: my-model
litellm_params:
model: hosted_vllm/qwen # add hosted_vllm/ prefix to route as OpenAI provider
api_base: https://hosted-vllm-api.co # add api base for OpenAI compatible provider
```
2. Start the proxy
```bash
$ litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
3. Test it!
```bash
curl -X POST http://0.0.0.0:4000/chat/completions \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "my-model",
"messages": [
{"role": "user", "content":
[
{"type": "text", "text": "Summarize the following video"},
{"type": "video_url", "video_url": {"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"}}
]
}
]
}'
```
</TabItem>
</Tabs>
## (Deprecated) for `vllm pip package` ## (Deprecated) for `vllm pip package`
### Using - `litellm.completion` ### Using - `litellm.completion`

View file

@ -10,17 +10,13 @@ Role-based access control (RBAC) is based on Organizations, Teams and Internal U
## Roles ## Roles
**Admin Roles** | Role Type | Role Name | Permissions |
- `proxy_admin`: admin over the platform |-----------|-----------|-------------|
- `proxy_admin_viewer`: can login, view all keys, view all spend. **Cannot** create keys/delete keys/add new users | **Admin** | `proxy_admin` | Admin over the platform |
| | `proxy_admin_viewer` | Can login, view all keys, view all spend. **Cannot** create keys/delete keys/add new users |
**Organization Roles** | **Organization** | `org_admin` | Admin over the organization. Can create teams and users within their organization |
- `org_admin`: admin over the organization. Can create teams and users within their organization | **Internal User** | `internal_user` | Can login, view/create/delete their own keys, view their spend. **Cannot** add new users |
| | `internal_user_viewer` | Can login, view their own keys, view their own spend. **Cannot** create/delete keys, add new users |
**Internal User Roles**
- `internal_user`: can login, view/create/delete their own keys, view their spend. **Cannot** add new users.
- `internal_user_viewer`: can login, view their own keys, view their own spend. **Cannot** create/delete keys, add new users.
## Onboarding Organizations ## Onboarding Organizations

View file

@ -36,7 +36,7 @@ import TabItem from '@theme/TabItem';
- Virtual Key Rate Limit - Virtual Key Rate Limit
- User Rate Limit - User Rate Limit
- Team Limit - Team Limit
- The `_PROXY_track_cost_callback` updates spend / usage in the LiteLLM database. [Here is everything tracked in the DB per request](https://github.com/BerriAI/litellm/blob/ba41a72f92a9abf1d659a87ec880e8e319f87481/schema.prisma#L172) - The `_ProxyDBLogger` updates spend / usage in the LiteLLM database. [Here is everything tracked in the DB per request](https://github.com/BerriAI/litellm/blob/ba41a72f92a9abf1d659a87ec880e8e319f87481/schema.prisma#L172)
## Frequently Asked Questions ## Frequently Asked Questions

View file

@ -2,7 +2,6 @@ import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# Caching # Caching
Cache LLM Responses
:::note :::note
@ -10,14 +9,19 @@ For OpenAI/Anthropic Prompt Caching, go [here](../completion/prompt_caching.md)
::: :::
LiteLLM supports: Cache LLM Responses. LiteLLM's caching system stores and reuses LLM responses to save costs and reduce latency. When you make the same request twice, the cached response is returned instead of calling the LLM API again.
### Supported Caches
- In Memory Cache - In Memory Cache
- Redis Cache - Redis Cache
- Qdrant Semantic Cache - Qdrant Semantic Cache
- Redis Semantic Cache - Redis Semantic Cache
- s3 Bucket Cache - s3 Bucket Cache
## Quick Start - Redis, s3 Cache, Semantic Cache ## Quick Start
<Tabs> <Tabs>
<TabItem value="redis" label="redis cache"> <TabItem value="redis" label="redis cache">
@ -369,9 +373,9 @@ $ litellm --config /path/to/config.yaml
</Tabs> </Tabs>
## Usage
### Basic
## Using Caching - /chat/completions
<Tabs> <Tabs>
<TabItem value="chat_completions" label="/chat/completions"> <TabItem value="chat_completions" label="/chat/completions">
@ -416,6 +420,239 @@ curl --location 'http://0.0.0.0:4000/embeddings' \
</TabItem> </TabItem>
</Tabs> </Tabs>
### Dynamic Cache Controls
| Parameter | Type | Description |
|-----------|------|-------------|
| `ttl` | *Optional(int)* | Will cache the response for the user-defined amount of time (in seconds) |
| `s-maxage` | *Optional(int)* | Will only accept cached responses that are within user-defined range (in seconds) |
| `no-cache` | *Optional(bool)* | Will not store the response in cache. |
| `no-store` | *Optional(bool)* | Will not cache the response |
| `namespace` | *Optional(str)* | Will cache the response under a user-defined namespace |
Each cache parameter can be controlled on a per-request basis. Here are examples for each parameter:
### `ttl`
Set how long (in seconds) to cache a response.
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="your-api-key",
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model="gpt-3.5-turbo",
extra_body={
"cache": {
"ttl": 300 # Cache response for 5 minutes
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"ttl": 300},
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
</TabItem>
</Tabs>
### `s-maxage`
Only accept cached responses that are within the specified age (in seconds).
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="your-api-key",
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model="gpt-3.5-turbo",
extra_body={
"cache": {
"s-maxage": 600 # Only use cache if less than 10 minutes old
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"s-maxage": 600},
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
</TabItem>
</Tabs>
### `no-cache`
Force a fresh response, bypassing the cache.
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="your-api-key",
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model="gpt-3.5-turbo",
extra_body={
"cache": {
"no-cache": True # Skip cache check, get fresh response
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"no-cache": true},
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
</TabItem>
</Tabs>
### `no-store`
Will not store the response in cache.
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="your-api-key",
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model="gpt-3.5-turbo",
extra_body={
"cache": {
"no-store": True # Don't cache this response
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"no-store": true},
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
</TabItem>
</Tabs>
### `namespace`
Store the response under a specific cache namespace.
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
from openai import OpenAI
client = OpenAI(
api_key="your-api-key",
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": "Hello"}],
model="gpt-3.5-turbo",
extra_body={
"cache": {
"namespace": "my-custom-namespace" # Store in custom namespace
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"namespace": "my-custom-namespace"},
"messages": [
{"role": "user", "content": "Hello"}
]
}'
```
</TabItem>
</Tabs>
## Set cache for proxy, but not on the actual llm api call ## Set cache for proxy, but not on the actual llm api call
Use this if you just want to enable features like rate limiting, and loadbalancing across multiple instances. Use this if you just want to enable features like rate limiting, and loadbalancing across multiple instances.
@ -501,253 +738,6 @@ litellm_settings:
# /chat/completions, /completions, /embeddings, /audio/transcriptions # /chat/completions, /completions, /embeddings, /audio/transcriptions
``` ```
### **Turn on / off caching per request. **
The proxy support 4 cache-controls:
- `ttl`: *Optional(int)* - Will cache the response for the user-defined amount of time (in seconds).
- `s-maxage`: *Optional(int)* Will only accept cached responses that are within user-defined range (in seconds).
- `no-cache`: *Optional(bool)* Will not return a cached response, but instead call the actual endpoint.
- `no-store`: *Optional(bool)* Will not cache the response.
[Let us know if you need more](https://github.com/BerriAI/litellm/issues/1218)
**Turn off caching**
Set `no-cache=True`, this will not return a cached response
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
import os
from openai import OpenAI
client = OpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Say this is a test",
}
],
model="gpt-3.5-turbo",
extra_body = { # OpenAI python accepts extra args in extra_body
cache: {
"no-cache": True # will not return a cached response
}
}
)
```
</TabItem>
<TabItem value="curl" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"no-cache": True},
"messages": [
{"role": "user", "content": "Say this is a test"}
]
}'
```
</TabItem>
</Tabs>
**Turn on caching**
By default cache is always on
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
import os
from openai import OpenAI
client = OpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Say this is a test",
}
],
model="gpt-3.5-turbo"
)
```
</TabItem>
<TabItem value="curl on" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "Say this is a test"}
]
}'
```
</TabItem>
</Tabs>
**Set `ttl`**
Set `ttl=600`, this will caches response for 10 minutes (600 seconds)
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
import os
from openai import OpenAI
client = OpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Say this is a test",
}
],
model="gpt-3.5-turbo",
extra_body = { # OpenAI python accepts extra args in extra_body
cache: {
"ttl": 600 # caches response for 10 minutes
}
}
)
```
</TabItem>
<TabItem value="curl on" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"ttl": 600},
"messages": [
{"role": "user", "content": "Say this is a test"}
]
}'
```
</TabItem>
</Tabs>
**Set `s-maxage`**
Set `s-maxage`, this will only get responses cached within last 10 minutes
<Tabs>
<TabItem value="openai" label="OpenAI Python SDK">
```python
import os
from openai import OpenAI
client = OpenAI(
# This is the default and can be omitted
api_key=os.environ.get("OPENAI_API_KEY"),
base_url="http://0.0.0.0:4000"
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Say this is a test",
}
],
model="gpt-3.5-turbo",
extra_body = { # OpenAI python accepts extra args in extra_body
cache: {
"s-maxage": 600 # only get responses cached within last 10 minutes
}
}
)
```
</TabItem>
<TabItem value="curl on" label="curl">
```shell
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-3.5-turbo",
"cache": {"s-maxage": 600},
"messages": [
{"role": "user", "content": "Say this is a test"}
]
}'
```
</TabItem>
</Tabs>
### Turn on / off caching per Key.
1. Add cache params when creating a key [full list](#turn-on--off-caching-per-key)
```bash
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{
"user_id": "222",
"metadata": {
"cache": {
"no-cache": true
}
}
}'
```
2. Test it!
```bash
curl -X POST 'http://localhost:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer <YOUR_NEW_KEY>' \
-d '{"model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": "bom dia"}]}'
```
### Deleting Cache Keys - `/cache/delete` ### Deleting Cache Keys - `/cache/delete`
In order to delete a cache key, send a request to `/cache/delete` with the `keys` you want to delete In order to delete a cache key, send a request to `/cache/delete` with the `keys` you want to delete

View file

@ -466,6 +466,9 @@ router_settings:
| OTEL_SERVICE_NAME | Service name identifier for OpenTelemetry | OTEL_SERVICE_NAME | Service name identifier for OpenTelemetry
| OTEL_TRACER_NAME | Tracer name for OpenTelemetry tracing | OTEL_TRACER_NAME | Tracer name for OpenTelemetry tracing
| PAGERDUTY_API_KEY | API key for PagerDuty Alerting | PAGERDUTY_API_KEY | API key for PagerDuty Alerting
| PHOENIX_API_KEY | API key for Arize Phoenix
| PHOENIX_COLLECTOR_ENDPOINT | API endpoint for Arize Phoenix
| PHOENIX_COLLECTOR_HTTP_ENDPOINT | API http endpoint for Arize Phoenix
| POD_NAME | Pod name for the server, this will be [emitted to `datadog` logs](https://docs.litellm.ai/docs/proxy/logging#datadog) as `POD_NAME` | POD_NAME | Pod name for the server, this will be [emitted to `datadog` logs](https://docs.litellm.ai/docs/proxy/logging#datadog) as `POD_NAME`
| PREDIBASE_API_BASE | Base URL for Predibase API | PREDIBASE_API_BASE | Base URL for Predibase API
| PRESIDIO_ANALYZER_API_BASE | Base URL for Presidio Analyzer service | PRESIDIO_ANALYZER_API_BASE | Base URL for Presidio Analyzer service
@ -488,14 +491,15 @@ router_settings:
| SLACK_DAILY_REPORT_FREQUENCY | Frequency of daily Slack reports (e.g., daily, weekly) | SLACK_DAILY_REPORT_FREQUENCY | Frequency of daily Slack reports (e.g., daily, weekly)
| SLACK_WEBHOOK_URL | Webhook URL for Slack integration | SLACK_WEBHOOK_URL | Webhook URL for Slack integration
| SMTP_HOST | Hostname for the SMTP server | SMTP_HOST | Hostname for the SMTP server
| SMTP_PASSWORD | Password for SMTP authentication | SMTP_PASSWORD | Password for SMTP authentication (do not set if SMTP does not require auth)
| SMTP_PORT | Port number for SMTP server | SMTP_PORT | Port number for SMTP server
| SMTP_SENDER_EMAIL | Email address used as the sender in SMTP transactions | SMTP_SENDER_EMAIL | Email address used as the sender in SMTP transactions
| SMTP_SENDER_LOGO | Logo used in emails sent via SMTP | SMTP_SENDER_LOGO | Logo used in emails sent via SMTP
| SMTP_TLS | Flag to enable or disable TLS for SMTP connections | SMTP_TLS | Flag to enable or disable TLS for SMTP connections
| SMTP_USERNAME | Username for SMTP authentication | SMTP_USERNAME | Username for SMTP authentication (do not set if SMTP does not require auth)
| SPEND_LOGS_URL | URL for retrieving spend logs | SPEND_LOGS_URL | URL for retrieving spend logs
| SSL_CERTIFICATE | Path to the SSL certificate file | SSL_CERTIFICATE | Path to the SSL certificate file
| SSL_SECURITY_LEVEL | [BETA] Security level for SSL/TLS connections. E.g. `DEFAULT@SECLEVEL=1`
| SSL_VERIFY | Flag to enable or disable SSL certificate verification | SSL_VERIFY | Flag to enable or disable SSL certificate verification
| SUPABASE_KEY | API key for Supabase service | SUPABASE_KEY | API key for Supabase service
| SUPABASE_URL | Base URL for Supabase instance | SUPABASE_URL | Base URL for Supabase instance

View file

@ -448,6 +448,34 @@ model_list:
s/o to [@David Manouchehri](https://www.linkedin.com/in/davidmanouchehri/) for helping with this. s/o to [@David Manouchehri](https://www.linkedin.com/in/davidmanouchehri/) for helping with this.
### Centralized Credential Management
Define credentials once and reuse them across multiple models. This helps with:
- Secret rotation
- Reducing config duplication
```yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: azure/gpt-4o
litellm_credential_name: default_azure_credential # Reference credential below
credential_list:
- credential_name: default_azure_credential
credential_values:
api_key: os.environ/AZURE_API_KEY # Load from environment
api_base: os.environ/AZURE_API_BASE
api_version: "2023-05-15"
credential_info:
description: "Production credentials for EU region"
```
#### Key Parameters
- `credential_name`: Unique identifier for the credential set
- `credential_values`: Key-value pairs of credentials/secrets (supports `os.environ/` syntax)
- `credential_info`: Key-value pairs of user provided credentials information. No key-value pairs are required, but the dictionary must exist.
### Load API Keys from Secret Managers (Azure Vault, etc) ### Load API Keys from Secret Managers (Azure Vault, etc)
[**Using Secret Managers with LiteLLM Proxy**](../secret) [**Using Secret Managers with LiteLLM Proxy**](../secret)

View file

@ -46,18 +46,17 @@ You can see the full DB Schema [here](https://github.com/BerriAI/litellm/blob/ma
| Table Name | Description | Row Insert Frequency | | Table Name | Description | Row Insert Frequency |
|------------|-------------|---------------------| |------------|-------------|---------------------|
| LiteLLM_SpendLogs | Detailed logs of all API requests. Records token usage, spend, and timing information. Tracks which models and keys were used. | **High - every LLM API request** | | LiteLLM_SpendLogs | Detailed logs of all API requests. Records token usage, spend, and timing information. Tracks which models and keys were used. | **High - every LLM API request - Success or Failure** |
| LiteLLM_ErrorLogs | Captures failed requests and errors. Stores exception details and request information. Helps with debugging and monitoring. | **Medium - on errors only** |
| LiteLLM_AuditLog | Tracks changes to system configuration. Records who made changes and what was modified. Maintains history of updates to teams, users, and models. | **Off by default**, **High - when enabled** | | LiteLLM_AuditLog | Tracks changes to system configuration. Records who made changes and what was modified. Maintains history of updates to teams, users, and models. | **Off by default**, **High - when enabled** |
## Disable `LiteLLM_SpendLogs` & `LiteLLM_ErrorLogs` ## Disable `LiteLLM_SpendLogs`
You can disable spend_logs and error_logs by setting `disable_spend_logs` and `disable_error_logs` to `True` on the `general_settings` section of your proxy_config.yaml file. You can disable spend_logs and error_logs by setting `disable_spend_logs` and `disable_error_logs` to `True` on the `general_settings` section of your proxy_config.yaml file.
```yaml ```yaml
general_settings: general_settings:
disable_spend_logs: True # Disable writing spend logs to DB disable_spend_logs: True # Disable writing spend logs to DB
disable_error_logs: True # Disable writing error logs to DB disable_error_logs: True # Only disable writing error logs to DB, regular spend logs will still be written unless `disable_spend_logs: True`
``` ```
### What is the impact of disabling these logs? ### What is the impact of disabling these logs?

View file

@ -37,7 +37,7 @@ guardrails:
- guardrail_name: aim-protected-app - guardrail_name: aim-protected-app
litellm_params: litellm_params:
guardrail: aim guardrail: aim
mode: pre_call # 'during_call' is also available mode: [pre_call, post_call] # "During_call" is also available
api_key: os.environ/AIM_API_KEY api_key: os.environ/AIM_API_KEY
api_base: os.environ/AIM_API_BASE # Optional, use only when using a self-hosted Aim Outpost api_base: os.environ/AIM_API_BASE # Optional, use only when using a self-hosted Aim Outpost
``` ```

View file

@ -78,6 +78,7 @@ Inherits from `StandardLoggingUserAPIKeyMetadata` and adds:
| `api_base` | `Optional[str]` | Optional API base URL | | `api_base` | `Optional[str]` | Optional API base URL |
| `response_cost` | `Optional[str]` | Optional response cost | | `response_cost` | `Optional[str]` | Optional response cost |
| `additional_headers` | `Optional[StandardLoggingAdditionalHeaders]` | Additional headers | | `additional_headers` | `Optional[StandardLoggingAdditionalHeaders]` | Additional headers |
| `batch_models` | `Optional[List[str]]` | Only set for Batches API. Lists the models used for cost calculation |
## StandardLoggingModelInformation ## StandardLoggingModelInformation

View file

@ -0,0 +1,53 @@
# Rotating Master Key
Here are our recommended steps for rotating your master key.
**1. Backup your DB**
In case of any errors during the encryption/de-encryption process, this will allow you to revert back to current state without issues.
**2. Call `/key/regenerate` with the new master key**
```bash
curl -L -X POST 'http://localhost:4000/key/regenerate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{
"key": "sk-1234",
"new_master_key": "sk-PIp1h0RekR"
}'
```
This will re-encrypt any models in your Proxy_ModelTable with the new master key.
Expect to start seeing decryption errors in logs, as your old master key is no longer able to decrypt the new values.
```bash
raise Exception("Unable to decrypt value={}".format(v))
Exception: Unable to decrypt value=<new-encrypted-value>
```
**3. Update LITELLM_MASTER_KEY**
In your environment variables update the value of LITELLM_MASTER_KEY to the new_master_key from Step 2.
This ensures the key used for decryption from db is the new key.
**4. Test it**
Make a test request to a model stored on proxy with a litellm key (new master key or virtual key) and see if it works
```bash
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gpt-4o-mini", # 👈 REPLACE with 'public model name' for any db-model
"messages": [
{
"content": "Hey, how's it going",
"role": "user"
}
],
}'
```

View file

@ -107,9 +107,9 @@ general_settings:
By default, LiteLLM writes several types of logs to the database: By default, LiteLLM writes several types of logs to the database:
- Every LLM API request to the `LiteLLM_SpendLogs` table - Every LLM API request to the `LiteLLM_SpendLogs` table
- LLM Exceptions to the `LiteLLM_LogsErrors` table - LLM Exceptions to the `LiteLLM_SpendLogs` table
If you're not viewing these logs on the LiteLLM UI (most users use Prometheus for monitoring), you can disable them by setting the following flags to `True`: If you're not viewing these logs on the LiteLLM UI, you can disable them by setting the following flags to `True`:
```yaml ```yaml
general_settings: general_settings:

View file

@ -0,0 +1,12 @@
# Release Cycle
Litellm Proxy has the following release cycle:
- `v1.x.x-nightly`: These are releases which pass ci/cd.
- `v1.x.x.rc`: These are releases which pass ci/cd + [manual review](https://github.com/BerriAI/litellm/discussions/8495#discussioncomment-12180711).
- `v1.x.x` OR `v1.x.x-stable`: These are releases which pass ci/cd + manual review + 3 days of production testing.
In production, we recommend using the latest `v1.x.x` release.
Follow our release notes [here](https://github.com/BerriAI/litellm/releases).

View file

@ -8,7 +8,16 @@ Special headers that are supported by LiteLLM.
`x-litellm-enable-message-redaction`: Optional[bool]: Don't log the message content to logging integrations. Just track spend. [Learn More](./logging#redact-messages-response-content) `x-litellm-enable-message-redaction`: Optional[bool]: Don't log the message content to logging integrations. Just track spend. [Learn More](./logging#redact-messages-response-content)
`x-litellm-tags`: Optional[str]: A comma separated list (e.g. `tag1,tag2,tag3`) of tags to use for [tag-based routing](./tag_routing) **OR** [spend-tracking](./enterprise.md#tracking-spend-for-custom-tags).
## Anthropic Headers ## Anthropic Headers
`anthropic-version` Optional[str]: The version of the Anthropic API to use. `anthropic-version` Optional[str]: The version of the Anthropic API to use.
`anthropic-beta` Optional[str]: The beta version of the Anthropic API to use. `anthropic-beta` Optional[str]: The beta version of the Anthropic API to use.
## OpenAI Headers
`openai-organization` Optional[str]: The organization to use for the OpenAI API. (currently needs to be enabled via `general_settings::forward_openai_org_id: true`)

View file

@ -1,17 +1,20 @@
# Rate Limit Headers # Response Headers
When you make a request to the proxy, the proxy will return the following [OpenAI-compatible headers](https://platform.openai.com/docs/guides/rate-limits/rate-limits-in-headers): When you make a request to the proxy, the proxy will return the following headers:
- `x-ratelimit-remaining-requests` - Optional[int]: The remaining number of requests that are permitted before exhausting the rate limit. ## Rate Limit Headers
- `x-ratelimit-remaining-tokens` - Optional[int]: The remaining number of tokens that are permitted before exhausting the rate limit. [OpenAI-compatible headers](https://platform.openai.com/docs/guides/rate-limits/rate-limits-in-headers):
- `x-ratelimit-limit-requests` - Optional[int]: The maximum number of requests that are permitted before exhausting the rate limit.
- `x-ratelimit-limit-tokens` - Optional[int]: The maximum number of tokens that are permitted before exhausting the rate limit.
- `x-ratelimit-reset-requests` - Optional[int]: The time at which the rate limit will reset.
- `x-ratelimit-reset-tokens` - Optional[int]: The time at which the rate limit will reset.
These headers are useful for clients to understand the current rate limit status and adjust their request rate accordingly. | Header | Type | Description |
|--------|------|-------------|
| `x-ratelimit-remaining-requests` | Optional[int] | The remaining number of requests that are permitted before exhausting the rate limit |
| `x-ratelimit-remaining-tokens` | Optional[int] | The remaining number of tokens that are permitted before exhausting the rate limit |
| `x-ratelimit-limit-requests` | Optional[int] | The maximum number of requests that are permitted before exhausting the rate limit |
| `x-ratelimit-limit-tokens` | Optional[int] | The maximum number of tokens that are permitted before exhausting the rate limit |
| `x-ratelimit-reset-requests` | Optional[int] | The time at which the rate limit will reset |
| `x-ratelimit-reset-tokens` | Optional[int] | The time at which the rate limit will reset |
## How are these headers calculated? ### How Rate Limit Headers work
**If key has rate limits set** **If key has rate limits set**
@ -19,6 +22,50 @@ The proxy will return the [remaining rate limits for that key](https://github.co
**If key does not have rate limits set** **If key does not have rate limits set**
The proxy returns the remaining requests/tokens returned by the backend provider. The proxy returns the remaining requests/tokens returned by the backend provider. (LiteLLM will standardize the backend provider's response headers to match the OpenAI format)
If the backend provider does not return these headers, the value will be `None`. If the backend provider does not return these headers, the value will be `None`.
These headers are useful for clients to understand the current rate limit status and adjust their request rate accordingly.
## Latency Headers
| Header | Type | Description |
|--------|------|-------------|
| `x-litellm-response-duration-ms` | float | Total duration of the API response in milliseconds |
| `x-litellm-overhead-duration-ms` | float | LiteLLM processing overhead in milliseconds |
## Retry, Fallback Headers
| Header | Type | Description |
|--------|------|-------------|
| `x-litellm-attempted-retries` | int | Number of retry attempts made |
| `x-litellm-attempted-fallbacks` | int | Number of fallback attempts made |
| `x-litellm-max-fallbacks` | int | Maximum number of fallback attempts allowed |
## Cost Tracking Headers
| Header | Type | Description |
|--------|------|-------------|
| `x-litellm-response-cost` | float | Cost of the API call |
| `x-litellm-key-spend` | float | Total spend for the API key |
## LiteLLM Specific Headers
| Header | Type | Description |
|--------|------|-------------|
| `x-litellm-call-id` | string | Unique identifier for the API call |
| `x-litellm-model-id` | string | Unique identifier for the model used |
| `x-litellm-model-api-base` | string | Base URL of the API endpoint |
| `x-litellm-version` | string | Version of LiteLLM being used |
| `x-litellm-model-group` | string | Model group identifier |
## Response headers from LLM providers
LiteLLM also returns the original response headers from the LLM provider. These headers are prefixed with `llm_provider-` to distinguish them from LiteLLM's headers.
Example response headers:
```
llm_provider-openai-processing-ms: 256
llm_provider-openai-version: 2020-10-01
llm_provider-x-ratelimit-limit-requests: 30000
llm_provider-x-ratelimit-limit-tokens: 150000000
```

View file

@ -143,6 +143,26 @@ Response
} }
``` ```
## Calling via Request Header
You can also call via request header `x-litellm-tags`
```shell
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-H 'x-litellm-tags: free,my-custom-tag' \
-d '{
"model": "gpt-4",
"messages": [
{
"role": "user",
"content": "Hey, how'\''s it going 123456?"
}
]
}'
```
## Setting Default Tags ## Setting Default Tags
Use this if you want all untagged requests to be routed to specific deployments Use this if you want all untagged requests to be routed to specific deployments

View file

@ -102,7 +102,19 @@ curl --location 'http://0.0.0.0:4000/v1/chat/completions' \
</TabItem> </TabItem>
</Tabs> </Tabs>
## Advanced - Set Accepted JWT Scope Names ## Advanced
### Multiple OIDC providers
Use this if you want LiteLLM to validate your JWT against multiple OIDC providers (e.g. Google Cloud, GitHub Auth)
Set `JWT_PUBLIC_KEY_URL` in your environment to a comma-separated list of URLs for your OIDC providers.
```bash
export JWT_PUBLIC_KEY_URL="https://demo.duendesoftware.com/.well-known/openid-configuration/jwks,https://accounts.google.com/.well-known/openid-configuration/jwks"
```
### Set Accepted JWT Scope Names
Change the string in JWT 'scopes', that litellm evaluates to see if a user has admin access. Change the string in JWT 'scopes', that litellm evaluates to see if a user has admin access.
@ -114,7 +126,7 @@ general_settings:
admin_jwt_scope: "litellm-proxy-admin" admin_jwt_scope: "litellm-proxy-admin"
``` ```
## Tracking End-Users / Internal Users / Team / Org ### Tracking End-Users / Internal Users / Team / Org
Set the field in the jwt token, which corresponds to a litellm user / team / org. Set the field in the jwt token, which corresponds to a litellm user / team / org.
@ -156,7 +168,7 @@ scope: ["litellm-proxy-admin",...]
scope: "litellm-proxy-admin ..." scope: "litellm-proxy-admin ..."
``` ```
## Control model access with Teams ### Control model access with Teams
1. Specify the JWT field that contains the team ids, that the user belongs to. 1. Specify the JWT field that contains the team ids, that the user belongs to.
@ -207,7 +219,65 @@ OIDC Auth for API: [**See Walkthrough**](https://www.loom.com/share/00fe2deab59a
- If all checks pass, allow the request - If all checks pass, allow the request
## Advanced - Allowed Routes ### Custom JWT Validate
Validate a JWT Token using custom logic, if you need an extra way to verify if tokens are valid for LiteLLM Proxy.
#### 1. Setup custom validate function
```python
from typing import Literal
def my_custom_validate(token: str) -> Literal[True]:
"""
Only allow tokens with tenant-id == "my-unique-tenant", and claims == ["proxy-admin"]
"""
allowed_tenants = ["my-unique-tenant"]
allowed_claims = ["proxy-admin"]
if token["tenant_id"] not in allowed_tenants:
raise Exception("Invalid JWT token")
if token["claims"] not in allowed_claims:
raise Exception("Invalid JWT token")
return True
```
#### 2. Setup config.yaml
```yaml
general_settings:
master_key: sk-1234
enable_jwt_auth: True
litellm_jwtauth:
user_id_jwt_field: "sub"
team_id_jwt_field: "tenant_id"
user_id_upsert: True
custom_validate: custom_validate.my_custom_validate # 👈 custom validate function
```
#### 3. Test the flow
**Expected JWT**
```
{
"sub": "my-unique-user",
"tenant_id": "INVALID_TENANT",
"claims": ["proxy-admin"]
}
```
**Expected Response**
```
{
"error": "Invalid JWT token"
}
```
### Allowed Routes
Configure which routes a JWT can access via the config. Configure which routes a JWT can access via the config.
@ -239,7 +309,7 @@ general_settings:
team_allowed_routes: ["/v1/chat/completions"] # 👈 Set accepted routes team_allowed_routes: ["/v1/chat/completions"] # 👈 Set accepted routes
``` ```
## Advanced - Caching Public Keys ### Caching Public Keys
Control how long public keys are cached for (in seconds). Control how long public keys are cached for (in seconds).
@ -253,7 +323,7 @@ general_settings:
public_key_ttl: 600 # 👈 KEY CHANGE public_key_ttl: 600 # 👈 KEY CHANGE
``` ```
## Advanced - Custom JWT Field ### Custom JWT Field
Set a custom field in which the team_id exists. By default, the 'client_id' field is checked. Set a custom field in which the team_id exists. By default, the 'client_id' field is checked.
@ -265,14 +335,7 @@ general_settings:
team_id_jwt_field: "client_id" # 👈 KEY CHANGE team_id_jwt_field: "client_id" # 👈 KEY CHANGE
``` ```
## All Params ### Block Teams
[**See Code**](https://github.com/BerriAI/litellm/blob/b204f0c01c703317d812a1553363ab0cb989d5b6/litellm/proxy/_types.py#L95)
## Advanced - Block Teams
To block all requests for a certain team id, use `/team/block` To block all requests for a certain team id, use `/team/block`
@ -299,7 +362,7 @@ curl --location 'http://0.0.0.0:4000/team/unblock' \
``` ```
## Advanced - Upsert Users + Allowed Email Domains ### Upsert Users + Allowed Email Domains
Allow users who belong to a specific email domain, automatic access to the proxy. Allow users who belong to a specific email domain, automatic access to the proxy.
@ -354,7 +417,7 @@ environment_variables:
### Example Token ### Example Token
``` ```bash
{ {
"aud": "api://LiteLLM_Proxy", "aud": "api://LiteLLM_Proxy",
"oid": "eec236bd-0135-4b28-9354-8fc4032d543e", "oid": "eec236bd-0135-4b28-9354-8fc4032d543e",
@ -415,9 +478,9 @@ general_settings:
Expected Token: Expected Token:
``` ```bash
{ {
"scope": ["litellm.api.consumer", "litellm.api.gpt_3_5_turbo"] "scope": ["litellm.api.consumer", "litellm.api.gpt_3_5_turbo"] # can be a list or a space-separated string
} }
``` ```
@ -437,3 +500,9 @@ curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
] ]
}' }'
``` ```
## All JWT Params
[**See Code**](https://github.com/BerriAI/litellm/blob/b204f0c01c703317d812a1553363ab0cb989d5b6/litellm/proxy/_types.py#L95)

View file

@ -0,0 +1,55 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# Adding LLM Credentials
You can add LLM provider credentials on the UI. Once you add credentials you can re-use them when adding new models
## Add a credential + model
### 1. Navigate to LLM Credentials page
Go to Models -> LLM Credentials -> Add Credential
<Image img={require('../../img/ui_cred_add.png')} />
### 2. Add credentials
Select your LLM provider, enter your API Key and click "Add Credential"
**Note: Credentials are based on the provider, if you select Vertex AI then you will see `Vertex Project`, `Vertex Location` and `Vertex Credentials` fields**
<Image img={require('../../img/ui_add_cred_2.png')} />
### 3. Use credentials when adding a model
Go to Add Model -> Existing Credentials -> Select your credential in the dropdown
<Image img={require('../../img/ui_cred_3.png')} />
## Create a Credential from an existing model
Use this if you have already created a model and want to store the model credentials for future use
### 1. Select model to create a credential from
Go to Models -> Select your model -> Credential -> Create Credential
<Image img={require('../../img/ui_cred_4.png')} />
### 2. Use new credential when adding a model
Go to Add Model -> Existing Credentials -> Select your credential in the dropdown
<Image img={require('../../img/use_model_cred.png')} />
## Frequently Asked Questions
How are credentials stored?
Credentials in the DB are encrypted/decrypted using `LITELLM_SALT_KEY`, if set. If not, then they are encrypted using `LITELLM_MASTER_KEY`. These keys should be kept secret and not shared with others.

View file

@ -0,0 +1,55 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# UI Logs Page
View Spend, Token Usage, Key, Team Name for Each Request to LiteLLM
<Image img={require('../../img/ui_request_logs.png')}/>
## Overview
| Log Type | Tracked by Default |
|----------|-------------------|
| Success Logs | ✅ Yes |
| Error Logs | ✅ Yes |
| Request/Response Content Stored | ❌ No by Default, **opt in with `store_prompts_in_spend_logs`** |
**By default LiteLLM does not track the request and response content.**
## Tracking - Request / Response Content in Logs Page
If you want to view request and response content on LiteLLM Logs, you need to opt in with this setting
```yaml
general_settings:
store_prompts_in_spend_logs: true
```
<Image img={require('../../img/ui_request_logs_content.png')}/>
## Stop storing Error Logs in DB
If you do not want to store error logs in DB, you can opt out with this setting
```yaml
general_settings:
disable_error_logs: True # Only disable writing error logs to DB, regular spend logs will still be written unless `disable_spend_logs: True`
```
## Stop storing Spend Logs in DB
If you do not want to store spend logs in DB, you can opt out with this setting
```yaml
general_settings:
disable_spend_logs: True # Disable writing spend logs to DB
```

View file

@ -1,11 +1,11 @@
import Image from '@theme/IdealImage'; import Image from '@theme/IdealImage';
# User Management Heirarchy # User Management Hierarchy
<Image img={require('../../img/litellm_user_heirarchy.png')} style={{ width: '100%', maxWidth: '4000px' }} /> <Image img={require('../../img/litellm_user_heirarchy.png')} style={{ width: '100%', maxWidth: '4000px' }} />
LiteLLM supports a heirarchy of users, teams, organizations, and budgets. LiteLLM supports a hierarchy of users, teams, organizations, and budgets.
- Organizations can have multiple teams. [API Reference](https://litellm-api.up.railway.app/#/organization%20management) - Organizations can have multiple teams. [API Reference](https://litellm-api.up.railway.app/#/organization%20management)
- Teams can have multiple users. [API Reference](https://litellm-api.up.railway.app/#/team%20management) - Teams can have multiple users. [API Reference](https://litellm-api.up.railway.app/#/team%20management)

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# Realtime Endpoints # /realtime
Use this to loadbalance across Azure + OpenAI. Use this to loadbalance across Azure + OpenAI.

View file

@ -0,0 +1,366 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# 'Thinking' / 'Reasoning Content'
:::info
Requires LiteLLM v1.63.0+
:::
Supported Providers:
- Deepseek (`deepseek/`)
- Anthropic API (`anthropic/`)
- Bedrock (Anthropic + Deepseek) (`bedrock/`)
- Vertex AI (Anthropic) (`vertexai/`)
- OpenRouter (`openrouter/`)
LiteLLM will standardize the `reasoning_content` in the response and `thinking_blocks` in the assistant message.
```python
"message": {
...
"reasoning_content": "The capital of France is Paris.",
"thinking_blocks": [
{
"type": "thinking",
"thinking": "The capital of France is Paris.",
"signature": "EqoBCkgIARABGAIiQL2UoU0b1OHYi+..."
}
]
}
```
## Quick Start
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import completion
import os
os.environ["ANTHROPIC_API_KEY"] = ""
response = completion(
model="anthropic/claude-3-7-sonnet-20250219",
messages=[
{"role": "user", "content": "What is the capital of France?"},
],
thinking={"type": "enabled", "budget_tokens": 1024} # 👈 REQUIRED FOR ANTHROPIC models (on `anthropic/`, `bedrock/`, `vertexai/`)
)
print(response.choices[0].message.content)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "anthropic/claude-3-7-sonnet-20250219",
"messages": [
{
"role": "user",
"content": "What is the capital of France?"
}
],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
```
</TabItem>
</Tabs>
**Expected Response**
```bash
{
"id": "3b66124d79a708e10c603496b363574c",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": " won the FIFA World Cup in 2022.",
"role": "assistant",
"tool_calls": null,
"function_call": null
}
}
],
"created": 1723323084,
"model": "deepseek/deepseek-chat",
"object": "chat.completion",
"system_fingerprint": "fp_7e0991cad4",
"usage": {
"completion_tokens": 12,
"prompt_tokens": 16,
"total_tokens": 28,
},
"service_tier": null
}
```
## Tool Calling with `thinking`
Here's how to use `thinking` blocks by Anthropic with tool calling.
<Tabs>
<TabItem value="sdk" label="SDK">
```python
litellm._turn_on_debug()
litellm.modify_params = True
model = "anthropic/claude-3-7-sonnet-20250219" # works across Anthropic, Bedrock, Vertex AI
# Step 1: send the conversation and available functions to the model
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
}
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model=model,
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
thinking={"type": "enabled", "budget_tokens": 1024},
)
print("Response\n", response)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
print("Expecting there to be 3 tool calls")
assert (
len(tool_calls) > 0
) # this has to call the function for SF, Tokyo and paris
# Step 2: check if the model wanted to call a function
print(f"tool_calls: {tool_calls}")
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(
response_message
) # extend conversation with assistant's reply
print("Response message\n", response_message)
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
if function_name not in available_functions:
# the model called a function that does not exist in available_functions - don't try calling anything
return
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
print(f"messages: {messages}")
second_response = litellm.completion(
model=model,
messages=messages,
seed=22,
# tools=tools,
drop_params=True,
thinking={"type": "enabled", "budget_tokens": 1024},
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
1. Setup config.yaml
```yaml
model_list:
- model_name: claude-3-7-sonnet-thinking
litellm_params:
model: anthropic/claude-3-7-sonnet-20250219
api_key: os.environ/ANTHROPIC_API_KEY
thinking: {
"type": "enabled",
"budget_tokens": 1024
}
```
2. Run proxy
```bash
litellm --config config.yaml
# RUNNING on http://0.0.0.0:4000
```
3. Make 1st call
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "claude-3-7-sonnet-thinking",
"messages": [
{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses"},
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
],
"tool_choice": "auto"
}'
```
4. Make 2nd call with tool call results
```bash
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "claude-3-7-sonnet-thinking",
"messages": [
{
"role": "user",
"content": "What\'s the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses"
},
{
"role": "assistant",
"content": "I\'ll check the current weather for these three cities for you:",
"tool_calls": [
{
"index": 2,
"function": {
"arguments": "{\"location\": \"San Francisco\"}",
"name": "get_current_weather"
},
"id": "tooluse_mnqzmtWYRjCxUInuAdK7-w",
"type": "function"
}
],
"function_call": null,
"reasoning_content": "The user is asking for the current weather in three different locations: San Francisco, Tokyo, and Paris. I have access to the `get_current_weather` function that can provide this information.\n\nThe function requires a `location` parameter, and has an optional `unit` parameter. The user hasn't specified which unit they prefer (celsius or fahrenheit), so I'll use the default provided by the function.\n\nI need to make three separate function calls, one for each location:\n1. San Francisco\n2. Tokyo\n3. Paris\n\nThen I'll compile the results into a response with three distinct weather reports as requested by the user.",
"thinking_blocks": [
{
"type": "thinking",
"thinking": "The user is asking for the current weather in three different locations: San Francisco, Tokyo, and Paris. I have access to the `get_current_weather` function that can provide this information.\n\nThe function requires a `location` parameter, and has an optional `unit` parameter. The user hasn't specified which unit they prefer (celsius or fahrenheit), so I'll use the default provided by the function.\n\nI need to make three separate function calls, one for each location:\n1. San Francisco\n2. Tokyo\n3. Paris\n\nThen I'll compile the results into a response with three distinct weather reports as requested by the user.",
"signature": "EqoBCkgIARABGAIiQCkBXENoyB+HstUOs/iGjG+bvDbIQRrxPsPpOSt5yDxX6iulZ/4K/w9Rt4J5Nb2+3XUYsyOH+CpZMfADYvItFR4SDPb7CmzoGKoolCMAJRoM62p1ZRASZhrD3swqIjAVY7vOAFWKZyPEJglfX/60+bJphN9W1wXR6rWrqn3MwUbQ5Mb/pnpeb10HMploRgUqEGKOd6fRKTkUoNDuAnPb55c="
}
],
"provider_specific_fields": {
"reasoningContentBlocks": [
{
"reasoningText": {
"signature": "EqoBCkgIARABGAIiQCkBXENoyB+HstUOs/iGjG+bvDbIQRrxPsPpOSt5yDxX6iulZ/4K/w9Rt4J5Nb2+3XUYsyOH+CpZMfADYvItFR4SDPb7CmzoGKoolCMAJRoM62p1ZRASZhrD3swqIjAVY7vOAFWKZyPEJglfX/60+bJphN9W1wXR6rWrqn3MwUbQ5Mb/pnpeb10HMploRgUqEGKOd6fRKTkUoNDuAnPb55c=",
"text": "The user is asking for the current weather in three different locations: San Francisco, Tokyo, and Paris. I have access to the `get_current_weather` function that can provide this information.\n\nThe function requires a `location` parameter, and has an optional `unit` parameter. The user hasn't specified which unit they prefer (celsius or fahrenheit), so I'll use the default provided by the function.\n\nI need to make three separate function calls, one for each location:\n1. San Francisco\n2. Tokyo\n3. Paris\n\nThen I'll compile the results into a response with three distinct weather reports as requested by the user."
}
}
]
}
},
{
"tool_call_id": "tooluse_mnqzmtWYRjCxUInuAdK7-w",
"role": "tool",
"name": "get_current_weather",
"content": "{\"location\": \"San Francisco\", \"temperature\": \"72\", \"unit\": \"fahrenheit\"}"
}
]
}'
```
</TabItem>
</Tabs>
## Switching between Anthropic + Deepseek models
Set `drop_params=True` to drop the 'thinking' blocks when swapping from Anthropic to Deepseek models. Suggest improvements to this approach [here](https://github.com/BerriAI/litellm/discussions/8927).
```python
litellm.drop_params = True # 👈 EITHER GLOBALLY or per request
# or per request
## Anthropic
response = litellm.completion(
model="anthropic/claude-3-7-sonnet-20250219",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
drop_params=True,
)
## Deepseek
response = litellm.completion(
model="deepseek/deepseek-chat",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
drop_params=True,
)
```
## Spec
These fields can be accessed via `response.choices[0].message.reasoning_content` and `response.choices[0].message.thinking_blocks`.
- `reasoning_content` - str: The reasoning content from the model. Returned across all providers.
- `thinking_blocks` - Optional[List[Dict[str, str]]]: A list of thinking blocks from the model. Only returned for Anthropic models.
- `type` - str: The type of thinking block.
- `thinking` - str: The thinking from the model.
- `signature` - str: The signature delta from the model.

View file

@ -1,4 +1,4 @@
# Rerank # /rerank
:::tip :::tip
@ -111,7 +111,7 @@ curl http://0.0.0.0:4000/rerank \
| Provider | Link to Usage | | Provider | Link to Usage |
|-------------|--------------------| |-------------|--------------------|
| Cohere | [Usage](#quick-start) | | Cohere (v1 + v2 clients) | [Usage](#quick-start) |
| Together AI| [Usage](../docs/providers/togetherai) | | Together AI| [Usage](../docs/providers/togetherai) |
| Azure AI| [Usage](../docs/providers/azure_ai) | | Azure AI| [Usage](../docs/providers/azure_ai) |
| Jina AI| [Usage](../docs/providers/jina_ai) | | Jina AI| [Usage](../docs/providers/jina_ai) |

View file

@ -0,0 +1,117 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# /responses [Beta]
LiteLLM provides a BETA endpoint in the spec of [OpenAI's `/responses` API](https://platform.openai.com/docs/api-reference/responses)
| Feature | Supported | Notes |
|---------|-----------|--------|
| Cost Tracking | ✅ | Works with all supported models |
| Logging | ✅ | Works across all integrations |
| End-user Tracking | ✅ | |
| Streaming | ✅ | |
| Fallbacks | ✅ | Works between supported models |
| Loadbalancing | ✅ | Works between supported models |
| Supported LiteLLM Versions | 1.63.8+ | |
| Supported LLM providers | `openai` | |
## Usage
## Create a model response
<Tabs>
<TabItem value="litellm-sdk" label="LiteLLM SDK">
#### Non-streaming
```python
import litellm
# Non-streaming response
response = litellm.responses(
model="gpt-4o",
input="Tell me a three sentence bedtime story about a unicorn.",
max_output_tokens=100
)
print(response)
```
#### Streaming
```python
import litellm
# Streaming response
response = litellm.responses(
model="gpt-4o",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
<TabItem value="proxy" label="OpenAI SDK with LiteLLM Proxy">
First, add this to your litellm proxy config.yaml:
```yaml
model_list:
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
```
Start your LiteLLM proxy:
```bash
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
```
Then use the OpenAI SDK pointed to your proxy:
#### Non-streaming
```python
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Non-streaming response
response = client.responses.create(
model="gpt-4o",
input="Tell me a three sentence bedtime story about a unicorn."
)
print(response)
```
#### Streaming
```python
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="http://localhost:4000", # Your proxy URL
api_key="your-api-key" # Your proxy API key
)
# Streaming response
response = client.responses.create(
model="gpt-4o",
input="Tell me a three sentence bedtime story about a unicorn.",
stream=True
)
for event in response:
print(event)
```
</TabItem>
</Tabs>

View file

@ -826,6 +826,65 @@ asyncio.run(router_acompletion())
## Basic Reliability ## Basic Reliability
### Weighted Deployments
Set `weight` on a deployment to pick one deployment more often than others.
This works across **simple-shuffle** routing strategy (this is the default, if no routing strategy is selected).
<Tabs>
<TabItem value="sdk" label="SDK">
```python
from litellm import Router
model_list = [
{
"model_name": "o1",
"litellm_params": {
"model": "o1-preview",
"api_key": os.getenv("OPENAI_API_KEY"),
"weight": 1
},
},
{
"model_name": "o1",
"litellm_params": {
"model": "o1-preview",
"api_key": os.getenv("OPENAI_API_KEY"),
"weight": 2 # 👈 PICK THIS DEPLOYMENT 2x MORE OFTEN THAN o1-preview
},
},
]
router = Router(model_list=model_list, routing_strategy="cost-based-routing")
response = await router.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey, how's it going?"}]
)
print(response)
```
</TabItem>
<TabItem value="proxy" label="PROXY">
```yaml
model_list:
- model_name: o1
litellm_params:
model: o1
api_key: os.environ/OPENAI_API_KEY
weight: 1
- model_name: o1
litellm_params:
model: o1-preview
api_key: os.environ/OPENAI_API_KEY
weight: 2 # 👈 PICK THIS DEPLOYMENT 2x MORE OFTEN THAN o1-preview
```
</TabItem>
</Tabs>
### Max Parallel Requests (ASYNC) ### Max Parallel Requests (ASYNC)
Used in semaphore for async requests on router. Limit the max concurrent calls made to a deployment. Useful in high-traffic scenarios. Used in semaphore for async requests on router. Limit the max concurrent calls made to a deployment. Useful in high-traffic scenarios.
@ -893,8 +952,8 @@ router_settings:
``` ```
Defaults: Defaults:
- allowed_fails: 0 - allowed_fails: 3
- cooldown_time: 60s - cooldown_time: 5s (`DEFAULT_COOLDOWN_TIME_SECONDS` in constants.py)
**Set Per Model** **Set Per Model**

View file

@ -96,6 +96,33 @@ litellm --config /path/to/config.yaml
``` ```
#### Using K/V pairs in 1 AWS Secret
You can read multiple keys from a single AWS Secret using the `primary_secret_name` parameter:
```yaml
general_settings:
key_management_system: "aws_secret_manager"
key_management_settings:
hosted_keys: [
"OPENAI_API_KEY_MODEL_1",
"OPENAI_API_KEY_MODEL_2",
]
primary_secret_name: "litellm_secrets" # 👈 Read multiple keys from one JSON secret
```
The `primary_secret_name` allows you to read multiple keys from a single AWS Secret as a JSON object. For example, the "litellm_secrets" would contain:
```json
{
"OPENAI_API_KEY_MODEL_1": "sk-key1...",
"OPENAI_API_KEY_MODEL_2": "sk-key2..."
}
```
This reduces the number of AWS Secrets you need to manage.
## Hashicorp Vault ## Hashicorp Vault
@ -353,4 +380,7 @@ general_settings:
# Hosted Keys Settings # Hosted Keys Settings
hosted_keys: ["litellm_master_key"] # OPTIONAL. Specify which env keys you stored on AWS hosted_keys: ["litellm_master_key"] # OPTIONAL. Specify which env keys you stored on AWS
# K/V pairs in 1 AWS Secret Settings
primary_secret_name: "litellm_secrets" # OPTIONAL. Read multiple keys from one JSON secret on AWS Secret Manager
``` ```

View file

@ -1,7 +1,7 @@
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# Text Completion # /completions
### Usage ### Usage
<Tabs> <Tabs>

View file

@ -2,9 +2,9 @@ import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs'; import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem'; import TabItem from '@theme/TabItem';
# Use LiteLLM AI Gateway with Aporia Guardrails # Aporia Guardrails with LiteLLM Gateway
In this tutorial we will use LiteLLM Proxy with Aporia to detect PII in requests and profanity in responses In this tutorial we will use LiteLLM AI Gateway with Aporia to detect PII in requests and profanity in responses
## 1. Setup guardrails on Aporia ## 1. Setup guardrails on Aporia

View file

@ -0,0 +1,103 @@
import Image from '@theme/IdealImage';
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# OpenWeb UI with LiteLLM
This guide walks you through connecting OpenWeb UI to LiteLLM. Using LiteLLM with OpenWeb UI allows teams to
- Access 100+ LLMs on OpenWeb UI
- Track Spend / Usage, Set Budget Limits
- Send Request/Response Logs to logging destinations like langfuse, s3, gcs buckets, etc.
- Set access controls eg. Control what models OpenWebUI can access.
## Quickstart
- Make sure to setup LiteLLM with the [LiteLLM Getting Started Guide](https://docs.litellm.ai/docs/proxy/docker_quick_start)
## 1. Start LiteLLM & OpenWebUI
- OpenWebUI starts running on [http://localhost:3000](http://localhost:3000)
- LiteLLM starts running on [http://localhost:4000](http://localhost:4000)
## 2. Create a Virtual Key on LiteLLM
Virtual Keys are API Keys that allow you to authenticate to LiteLLM Proxy. We will create a Virtual Key that will allow OpenWebUI to access LiteLLM.
### 2.1 LiteLLM User Management Hierarchy
On LiteLLM, you can create Organizations, Teams, Users and Virtual Keys. For this tutorial, we will create a Team and a Virtual Key.
- `Organization` - An Organization is a group of Teams. (US Engineering, EU Developer Tools)
- `Team` - A Team is a group of Users. (OpenWeb UI Team, Data Science Team, etc.)
- `User` - A User is an individual user (employee, developer, eg. `krrish@litellm.ai`)
- `Virtual Key` - A Virtual Key is an API Key that allows you to authenticate to LiteLLM Proxy. A Virtual Key is associated with a User or Team.
Once the Team is created, you can invite Users to the Team. You can read more about LiteLLM's User Management [here](https://docs.litellm.ai/docs/proxy/user_management_heirarchy).
### 2.2 Create a Team on LiteLLM
Navigate to [http://localhost:4000/ui](http://localhost:4000/ui) and create a new team.
<Image img={require('../../img/litellm_create_team.gif')} />
### 2.2 Create a Virtual Key on LiteLLM
Navigate to [http://localhost:4000/ui](http://localhost:4000/ui) and create a new virtual Key.
LiteLLM allows you to specify what models are available on OpenWeb UI (by specifying the models the key will have access to).
<Image img={require('../../img/create_key_in_team_oweb.gif')} />
## 3. Connect OpenWeb UI to LiteLLM
On OpenWeb UI, navigate to Settings -> Connections and create a new connection to LiteLLM
Enter the following details:
- URL: `http://localhost:4000` (your litellm proxy base url)
- Key: `your-virtual-key` (the key you created in the previous step)
<Image img={require('../../img/litellm_setup_openweb.gif')} />
### 3.1 Test Request
On the top left corner, select models you should only see the models you gave the key access to in Step 2.
Once you selected a model, enter your message content and click on `Submit`
<Image img={require('../../img/basic_litellm.gif')} />
### 3.2 Tracking Spend / Usage
After your request is made, navigate to `Logs` on the LiteLLM UI, you can see Team, Key, Model, Usage and Cost.
<!-- <Image img={require('../../img/litellm_logs_openweb.gif')} /> -->
## Render `thinking` content on OpenWeb UI
OpenWebUI requires reasoning/thinking content to be rendered with `<think></think>` tags. In order to render this for specific models, you can use the `merge_reasoning_content_in_choices` litellm parameter.
Example litellm config.yaml:
```yaml
model_list:
- model_name: thinking-anthropic-claude-3-7-sonnet
litellm_params:
model: bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0
thinking: {"type": "enabled", "budget_tokens": 1024}
max_tokens: 1080
merge_reasoning_content_in_choices: true
```
### Test it on OpenWeb UI
On the models dropdown select `thinking-anthropic-claude-3-7-sonnet`
<Image img={require('../../img/litellm_thinking_openweb.gif')} />

View file

@ -44,7 +44,7 @@ const config = {
path: './release_notes', path: './release_notes',
routeBasePath: 'release_notes', routeBasePath: 'release_notes',
blogTitle: 'Release Notes', blogTitle: 'Release Notes',
blogSidebarTitle: 'All Releases', blogSidebarTitle: 'Releases',
blogSidebarCount: 'ALL', blogSidebarCount: 'ALL',
postsPerPage: 'ALL', postsPerPage: 'ALL',
showReadingTime: false, showReadingTime: false,

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

After

Width:  |  Height:  |  Size: 195 KiB

Before After
Before After

Binary file not shown.

After

Width:  |  Height:  |  Size: 470 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 371 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 918 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 386 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 255 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 283 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 255 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 204 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 567 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 344 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 282 KiB

Some files were not shown because too many files have changed in this diff Show more