mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
build(model_prices_and_context_window.json): add model pricing for vertex ai llama 3.1 api
This commit is contained in:
parent
83ef52e180
commit
7df94100e8
6 changed files with 50 additions and 70 deletions
|
@ -53,39 +53,20 @@ class VertexAIError(Exception):
|
|||
|
||||
class VertexAILlama3Config:
|
||||
"""
|
||||
Reference:https://docs.anthropic.com/claude/reference/messages_post
|
||||
Reference:https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/llama#streaming
|
||||
|
||||
Note that the API for Claude on Vertex differs from the Anthropic API documentation in the following ways:
|
||||
|
||||
- `model` is not a valid parameter. The model is instead specified in the Google Cloud endpoint URL.
|
||||
- `anthropic_version` is a required parameter and must be set to "vertex-2023-10-16".
|
||||
|
||||
The class `VertexAIAnthropicConfig` provides configuration for the VertexAI's Anthropic API interface. Below are the parameters:
|
||||
The class `VertexAILlama3Config` provides configuration for the VertexAI's Llama API interface. Below are the parameters:
|
||||
|
||||
- `max_tokens` Required (integer) max tokens,
|
||||
- `anthropic_version` Required (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
|
||||
- `system` Optional (string) the system prompt, conversion from openai format to this is handled in factory.py
|
||||
- `temperature` Optional (float) The amount of randomness injected into the response
|
||||
- `top_p` Optional (float) Use nucleus sampling.
|
||||
- `top_k` Optional (int) Only sample from the top K options for each subsequent token
|
||||
- `stop_sequences` Optional (List[str]) Custom text sequences that cause the model to stop generating
|
||||
|
||||
Note: Please make sure to modify the default parameters as required for your use case.
|
||||
"""
|
||||
|
||||
max_tokens: Optional[int] = (
|
||||
4096 # anthropic max - setting this doesn't impact response, but is required by anthropic.
|
||||
)
|
||||
system: Optional[str] = None
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
top_k: Optional[int] = None
|
||||
stop_sequences: Optional[List[str]] = None
|
||||
max_tokens: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
anthropic_version: Optional[str] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
|
@ -115,61 +96,13 @@ class VertexAILlama3Config:
|
|||
def get_supported_openai_params(self):
|
||||
return [
|
||||
"max_tokens",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"stream",
|
||||
"stop",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"response_format",
|
||||
]
|
||||
|
||||
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "tools":
|
||||
optional_params["tools"] = value
|
||||
if param == "tool_choice":
|
||||
_tool_choice: Optional[AnthropicMessagesToolChoice] = None
|
||||
if value == "auto":
|
||||
_tool_choice = {"type": "auto"}
|
||||
elif value == "required":
|
||||
_tool_choice = {"type": "any"}
|
||||
elif isinstance(value, dict):
|
||||
_tool_choice = {"type": "tool", "name": value["function"]["name"]}
|
||||
|
||||
if _tool_choice is not None:
|
||||
optional_params["tool_choice"] = _tool_choice
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
if param == "stop":
|
||||
optional_params["stop_sequences"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
if param == "response_format" and "response_schema" in value:
|
||||
"""
|
||||
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
|
||||
- You usually want to provide a single tool
|
||||
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
|
||||
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
|
||||
"""
|
||||
_tool_choice = None
|
||||
_tool_choice = {"name": "json_tool_call", "type": "tool"}
|
||||
|
||||
_tool = AnthropicMessagesTool(
|
||||
name="json_tool_call",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"values": value["response_schema"]}, # type: ignore
|
||||
},
|
||||
)
|
||||
|
||||
optional_params["tools"] = [_tool]
|
||||
optional_params["tool_choice"] = _tool_choice
|
||||
optional_params["json_mode"] = True
|
||||
|
||||
return optional_params
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue