feat - set span attributes OTEL with raw request / response

This commit is contained in:
Ishaan Jaff 2024-06-08 14:01:59 -07:00
parent 9da1b27793
commit 7f86dc859e

View file

@ -1,6 +1,7 @@
import os
from dataclasses import dataclass
from datetime import datetime
import litellm
from litellm.integrations.custom_logger import CustomLogger
from litellm._logging import verbose_logger
@ -193,6 +194,7 @@ class OpenTelemetry(CustomLogger):
def _handle_sucess(self, kwargs, response_obj, start_time, end_time):
from opentelemetry.trace import Status, StatusCode
from opentelemetry import trace
verbose_logger.debug(
"OpenTelemetry Logger: Logging kwargs: %s, OTEL config settings=%s",
@ -209,18 +211,18 @@ class OpenTelemetry(CustomLogger):
)
span.set_status(Status(StatusCode.OK))
self.set_attributes(span, kwargs, response_obj)
span.end(end_time=self._to_ns(end_time))
# Span 2: Raw Request / Response to LLM
raw_request_span = self.tracer.start_span(
name=RAW_REQUEST_SPAN_NAME,
start_time=self._to_ns(start_time),
context=_parent_context,
context=trace.set_span_in_context(span),
)
raw_request_span.set_status(Status(StatusCode.OK))
self.set_raw_request_attributes(raw_request_span, kwargs, response_obj)
raw_request_span.end(end_time=self._to_ns(end_time))
span.end(end_time=self._to_ns(end_time))
if parent_otel_span is not None:
parent_otel_span.end(end_time=self._to_ns(datetime.now()))
@ -251,7 +253,8 @@ class OpenTelemetry(CustomLogger):
#############################################
# The name of the LLM a request is being made to
span.set_attribute(SpanAttributes.LLM_REQUEST_MODEL, kwargs.get("model"))
if kwargs.get("model"):
span.set_attribute(SpanAttributes.LLM_REQUEST_MODEL, kwargs.get("model"))
# The Generative AI Provider: Azure, OpenAI, etc.
span.set_attribute(
@ -260,64 +263,87 @@ class OpenTelemetry(CustomLogger):
)
# The maximum number of tokens the LLM generates for a request.
span.set_attribute(
SpanAttributes.LLM_REQUEST_MAX_TOKENS, optional_params.get("max_tokens")
)
if optional_params.get("max_tokens"):
span.set_attribute(
SpanAttributes.LLM_REQUEST_MAX_TOKENS, optional_params.get("max_tokens")
)
# The temperature setting for the LLM request.
span.set_attribute(
SpanAttributes.LLM_REQUEST_TEMPERATURE, optional_params.get("temperature")
)
if optional_params.get("temperature"):
span.set_attribute(
SpanAttributes.LLM_REQUEST_TEMPERATURE,
optional_params.get("temperature"),
)
# The top_p sampling setting for the LLM request.
span.set_attribute(
SpanAttributes.LLM_REQUEST_TOP_P, optional_params.get("top_p")
)
span.set_attribute(
SpanAttributes.LLM_IS_STREAMING, optional_params.get("stream")
)
span.set_attribute(
SpanAttributes.LLM_REQUEST_FUNCTIONS,
optional_params.get("tools"),
)
span.set_attribute(SpanAttributes.LLM_USER, optional_params.get("user"))
for idx, prompt in enumerate(kwargs.get("messages")):
if optional_params.get("top_p"):
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.role",
prompt.get("role"),
)
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.content",
prompt.get("content"),
SpanAttributes.LLM_REQUEST_TOP_P, optional_params.get("top_p")
)
span.set_attribute(
SpanAttributes.LLM_IS_STREAMING, optional_params.get("stream", False)
)
if optional_params.get("tools"):
# cast to str - since OTEL only accepts string values
_tools = str(optional_params.get("tools"))
span.set_attribute(SpanAttributes.LLM_REQUEST_FUNCTIONS, _tools)
if optional_params.get("user"):
span.set_attribute(SpanAttributes.LLM_USER, optional_params.get("user"))
if kwargs.get("messages"):
for idx, prompt in enumerate(kwargs.get("messages")):
if prompt.get("role"):
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.role",
prompt.get("role"),
)
if prompt.get("content"):
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.content",
prompt.get("content"),
)
#############################################
########## LLM Response Attributes ##########
#############################################
if response_obj.get("choices"):
for idx, choice in enumerate(response_obj.get("choices")):
if choice.get("finish_reason"):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.finish_reason",
choice.get("finish_reason"),
)
if choice.get("message"):
if choice.get("message").get("role"):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.role",
choice.get("message").get("role"),
)
if choice.get("message").get("content"):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.content",
choice.get("message").get("content"),
)
for idx, choice in enumerate(response_obj.get("choices")):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.finish_reason",
choice.get("finish_reason"),
)
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.role",
choice.get("message").get("role"),
)
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.content",
choice.get("message").get("content"),
)
if choice.get("message").get("tool_calls"):
_tool_calls = choice.get("message").get("tool_calls")
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.tool_calls",
_tool_calls,
)
# The unique identifier for the completion.
span.set_attribute("gen_ai.response.id", response_obj.get("id"))
if response_obj.get("id"):
span.set_attribute("gen_ai.response.id", response_obj.get("id"))
# The model used to generate the response.
span.set_attribute(SpanAttributes.LLM_RESPONSE_MODEL, response_obj.get("model"))
if response_obj.get("model"):
span.set_attribute(
SpanAttributes.LLM_RESPONSE_MODEL, response_obj.get("model")
)
usage = response_obj.get("usage")
if usage:
@ -338,7 +364,7 @@ class OpenTelemetry(CustomLogger):
usage.get("prompt_tokens"),
)
def set_anthropic_raw_request_attributes(self, span: Span, kwargs, response_obj):
def set_raw_request_attributes(self, span: Span, kwargs, response_obj):
from opentelemetry.semconv.ai import SpanAttributes
optional_params = kwargs.get("optional_params", {})
@ -354,52 +380,12 @@ class OpenTelemetry(CustomLogger):
# OTEL Attributes for the RAW Request to https://docs.anthropic.com/en/api/messages
if complete_input_dict:
if complete_input_dict.get("model"):
for param, val in complete_input_dict.items():
if not isinstance(val, str):
val = str(val)
span.set_attribute(
SpanAttributes.LLM_REQUEST_MODEL, complete_input_dict.get("model")
)
if complete_input_dict.get("messages"):
for idx, prompt in enumerate(complete_input_dict.get("messages")):
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.role",
prompt.get("role"),
)
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.content",
prompt.get("content"),
)
if complete_input_dict.get("max_tokens"):
span.set_attribute(
SpanAttributes.LLM_REQUEST_MAX_TOKENS,
complete_input_dict.get("max_tokens"),
)
if complete_input_dict.get("temperature"):
span.set_attribute(
SpanAttributes.LLM_REQUEST_TEMPERATURE,
complete_input_dict.get("temperature"),
)
if complete_input_dict.get("top_p"):
span.set_attribute(
SpanAttributes.LLM_REQUEST_TOP_P, complete_input_dict.get("top_p")
)
if complete_input_dict.get("stream"):
span.set_attribute(
SpanAttributes.LLM_IS_STREAMING, complete_input_dict.get("stream")
)
if complete_input_dict.get("tools"):
span.set_attribute(
SpanAttributes.LLM_REQUEST_FUNCTIONS,
complete_input_dict.get("tools"),
)
if complete_input_dict.get("user"):
span.set_attribute(
SpanAttributes.LLM_USER, complete_input_dict.get("user")
f"gen_ai.request.{param}",
val,
)
#############################################
@ -410,72 +396,16 @@ class OpenTelemetry(CustomLogger):
import json
_raw_response = json.loads(_raw_response)
# The unique identifier for the completion.
if _raw_response.get("id"):
span.set_attribute("gen_ai.response.id", _raw_response.get("id"))
# The model used to generate the response.
if _raw_response.get("model"):
for param, val in _raw_response.items():
if not isinstance(val, str):
val = str(val)
span.set_attribute(
SpanAttributes.LLM_RESPONSE_MODEL, _raw_response.get("model")
f"gen_ai.response.{param}",
val,
)
if _raw_response.get("content"):
for idx, choice in enumerate(_raw_response.get("content")):
if choice.get("type"):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.type",
choice.get("type"),
)
if choice.get("text"):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.content",
choice.get("text"),
)
if choice.get("id"):
# https://docs.anthropic.com/en/docs/tool-use
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.id",
choice.get("id"),
)
if choice.get("name"):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.name",
choice.get("name"),
)
if choice.get("input"):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.input",
choice.get("input"),
)
pass
def set_openai_raw_request_attributes(self, span: Span, kwargs, response_obj):
from opentelemetry.semconv.ai import SpanAttributes
pass
def set_default_raw_request_attributes(self, span: Span, kwargs, response_obj):
from opentelemetry.semconv.ai import SpanAttributes
pass
def set_raw_request_attributes(self, span: Span, kwargs, response_obj):
litellm_params = kwargs.get("litellm_params", {}) or {}
custom_llm_provider = litellm_params.get("custom_llm_provider", "Unknown")
if custom_llm_provider == "anthropic":
self.set_anthropic_raw_request_attributes(span, kwargs, response_obj)
elif custom_llm_provider == "openai":
self.set_openai_raw_request_attributes(span, kwargs, response_obj)
else:
self.set_default_raw_request_attributes(span, kwargs, response_obj)
def _to_ns(self, dt):
return int(dt.timestamp() * 1e9)