[UI] Render Reasoning content, ttft, usage metrics on test key page (#9931)

* add BaseReasoningEffortTests

* BaseReasoningLLMTests

* fix test rename

* docs update thinking / reasoning content docs

* show reasoning content on chat ui

* chat ui allow pasting in content

* chat ui fix size

* chat ui, show num reasoning tokens used

* ui render usage metrics on test key page
This commit is contained in:
Ishaan Jaff 2025-04-11 21:08:10 -07:00 committed by GitHub
parent 57bc03b30b
commit 7fde06d8d3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 521 additions and 20 deletions

View file

@ -23,7 +23,7 @@ import {
Divider,
} from "@tremor/react";
import { message, Select, Spin, Typography, Tooltip } from "antd";
import { message, Select, Spin, Typography, Tooltip, Input } from "antd";
import { makeOpenAIChatCompletionRequest } from "./chat_ui/llm_calls/chat_completion";
import { makeOpenAIImageGenerationRequest } from "./chat_ui/llm_calls/image_generation";
import { fetchAvailableModels, ModelGroup } from "./chat_ui/llm_calls/fetch_models";
@ -33,6 +33,9 @@ import { coy } from 'react-syntax-highlighter/dist/esm/styles/prism';
import EndpointSelector from "./chat_ui/EndpointSelector";
import TagSelector from "./tag_management/TagSelector";
import { determineEndpointType } from "./chat_ui/EndpointUtils";
import { MessageType } from "./chat_ui/types";
import ReasoningContent from "./chat_ui/ReasoningContent";
import ResponseMetrics, { TokenUsage } from "./chat_ui/ResponseMetrics";
import {
SendOutlined,
ApiOutlined,
@ -45,6 +48,8 @@ import {
TagsOutlined
} from "@ant-design/icons";
const { TextArea } = Input;
interface ChatUIProps {
accessToken: string | null;
token: string | null;
@ -65,7 +70,7 @@ const ChatUI: React.FC<ChatUIProps> = ({
);
const [apiKey, setApiKey] = useState("");
const [inputMessage, setInputMessage] = useState("");
const [chatHistory, setChatHistory] = useState<{ role: string; content: string; model?: string; isImage?: boolean }[]>([]);
const [chatHistory, setChatHistory] = useState<MessageType[]>([]);
const [selectedModel, setSelectedModel] = useState<string | undefined>(
undefined
);
@ -138,7 +143,11 @@ const ChatUI: React.FC<ChatUIProps> = ({
if (lastMessage && lastMessage.role === role && !lastMessage.isImage) {
return [
...prevHistory.slice(0, prevHistory.length - 1),
{ role, content: lastMessage.content + chunk, model },
{
...lastMessage,
content: lastMessage.content + chunk,
model
},
];
} else {
return [...prevHistory, { role, content: chunk, model }];
@ -146,6 +155,97 @@ const ChatUI: React.FC<ChatUIProps> = ({
});
};
const updateReasoningContent = (chunk: string) => {
setChatHistory((prevHistory) => {
const lastMessage = prevHistory[prevHistory.length - 1];
if (lastMessage && lastMessage.role === "assistant" && !lastMessage.isImage) {
return [
...prevHistory.slice(0, prevHistory.length - 1),
{
...lastMessage,
reasoningContent: (lastMessage.reasoningContent || "") + chunk
},
];
} else {
// If there's no assistant message yet, we'll create one with empty content
// but with reasoning content
if (prevHistory.length > 0 && prevHistory[prevHistory.length - 1].role === "user") {
return [
...prevHistory,
{
role: "assistant",
content: "",
reasoningContent: chunk
}
];
}
return prevHistory;
}
});
};
const updateTimingData = (timeToFirstToken: number) => {
console.log("updateTimingData called with:", timeToFirstToken);
setChatHistory((prevHistory) => {
const lastMessage = prevHistory[prevHistory.length - 1];
console.log("Current last message:", lastMessage);
if (lastMessage && lastMessage.role === "assistant") {
console.log("Updating assistant message with timeToFirstToken:", timeToFirstToken);
const updatedHistory = [
...prevHistory.slice(0, prevHistory.length - 1),
{
...lastMessage,
timeToFirstToken
},
];
console.log("Updated chat history:", updatedHistory);
return updatedHistory;
}
// If the last message is a user message and no assistant message exists yet,
// create a new assistant message with empty content
else if (lastMessage && lastMessage.role === "user") {
console.log("Creating new assistant message with timeToFirstToken:", timeToFirstToken);
return [
...prevHistory,
{
role: "assistant",
content: "",
timeToFirstToken
}
];
}
console.log("No appropriate message found to update timing");
return prevHistory;
});
};
const updateUsageData = (usage: TokenUsage) => {
console.log("Received usage data:", usage);
setChatHistory((prevHistory) => {
const lastMessage = prevHistory[prevHistory.length - 1];
if (lastMessage && lastMessage.role === "assistant") {
console.log("Updating message with usage data:", usage);
const updatedMessage = {
...lastMessage,
usage
};
console.log("Updated message:", updatedMessage);
return [
...prevHistory.slice(0, prevHistory.length - 1),
updatedMessage
];
}
return prevHistory;
});
};
const updateImageUI = (imageUrl: string, model: string) => {
setChatHistory((prevHistory) => [
...prevHistory,
@ -153,10 +253,12 @@ const ChatUI: React.FC<ChatUIProps> = ({
]);
};
const handleKeyDown = (event: React.KeyboardEvent<HTMLInputElement>) => {
if (event.key === 'Enter') {
const handleKeyDown = (event: React.KeyboardEvent<HTMLTextAreaElement>) => {
if (event.key === 'Enter' && !event.shiftKey) {
event.preventDefault(); // Prevent default to avoid newline
handleSendMessage();
}
// If Shift+Enter is pressed, the default behavior (inserting a newline) will occur
};
const handleCancelRequest = () => {
@ -206,7 +308,10 @@ const ChatUI: React.FC<ChatUIProps> = ({
selectedModel,
effectiveApiKey,
selectedTags,
signal
signal,
updateReasoningContent,
updateTimingData,
updateUsageData
);
} else if (endpointType === EndpointType.IMAGE) {
// For image generation
@ -410,7 +515,16 @@ const ChatUI: React.FC<ChatUIProps> = ({
</span>
)}
</div>
<div className="whitespace-pre-wrap break-words max-w-full message-content">
{message.reasoningContent && (
<ReasoningContent reasoningContent={message.reasoningContent} />
)}
<div className="whitespace-pre-wrap break-words max-w-full message-content"
style={{
wordWrap: 'break-word',
overflowWrap: 'break-word',
wordBreak: 'break-word',
hyphens: 'auto'
}}>
{message.isImage ? (
<img
src={message.content}
@ -432,21 +546,33 @@ const ChatUI: React.FC<ChatUIProps> = ({
language={match[1]}
PreTag="div"
className="rounded-md my-2"
wrapLines={true}
wrapLongLines={true}
{...props}
>
{String(children).replace(/\n$/, '')}
</SyntaxHighlighter>
) : (
<code className={`${className} px-1.5 py-0.5 rounded bg-gray-100 text-sm font-mono`} {...props}>
<code className={`${className} px-1.5 py-0.5 rounded bg-gray-100 text-sm font-mono`} style={{ wordBreak: 'break-word' }} {...props}>
{children}
</code>
);
}
},
pre: ({ node, ...props }) => (
<pre style={{ overflowX: 'auto', maxWidth: '100%' }} {...props} />
)
}}
>
{message.content}
</ReactMarkdown>
)}
{message.role === "assistant" && (message.timeToFirstToken || message.usage) && (
<ResponseMetrics
timeToFirstToken={message.timeToFirstToken}
usage={message.usage}
/>
)}
</div>
</div>
</div>
@ -461,18 +587,19 @@ const ChatUI: React.FC<ChatUIProps> = ({
<div className="p-4 border-t border-gray-200 bg-white">
<div className="flex items-center">
<TextInput
type="text"
<TextArea
value={inputMessage}
onChange={(e) => setInputMessage(e.target.value)}
onKeyDown={handleKeyDown}
placeholder={
endpointType === EndpointType.CHAT
? "Type your message..."
? "Type your message... (Shift+Enter for new line)"
: "Describe the image you want to generate..."
}
disabled={isLoading}
className="flex-1"
autoSize={{ minRows: 1, maxRows: 6 }}
style={{ resize: 'none', paddingRight: '10px', paddingLeft: '10px' }}
/>
{isLoading ? (
<Button

View file

@ -0,0 +1,64 @@
import React, { useState } from "react";
import { Button, Collapse } from "antd";
import ReactMarkdown from "react-markdown";
import { Prism as SyntaxHighlighter } from "react-syntax-highlighter";
import { coy } from 'react-syntax-highlighter/dist/esm/styles/prism';
import { DownOutlined, RightOutlined, BulbOutlined } from "@ant-design/icons";
interface ReasoningContentProps {
reasoningContent: string;
}
const ReasoningContent: React.FC<ReasoningContentProps> = ({ reasoningContent }) => {
const [isExpanded, setIsExpanded] = useState(true);
if (!reasoningContent) return null;
return (
<div className="reasoning-content mt-1 mb-2">
<Button
type="text"
className="flex items-center text-xs text-gray-500 hover:text-gray-700"
onClick={() => setIsExpanded(!isExpanded)}
icon={<BulbOutlined />}
>
{isExpanded ? "Hide reasoning" : "Show reasoning"}
{isExpanded ? <DownOutlined className="ml-1" /> : <RightOutlined className="ml-1" />}
</Button>
{isExpanded && (
<div className="mt-2 p-3 bg-gray-50 border border-gray-200 rounded-md text-sm text-gray-700">
<ReactMarkdown
components={{
code({node, inline, className, children, ...props}: React.ComponentPropsWithoutRef<'code'> & {
inline?: boolean;
node?: any;
}) {
const match = /language-(\w+)/.exec(className || '');
return !inline && match ? (
<SyntaxHighlighter
style={coy as any}
language={match[1]}
PreTag="div"
className="rounded-md my-2"
{...props}
>
{String(children).replace(/\n$/, '')}
</SyntaxHighlighter>
) : (
<code className={`${className} px-1.5 py-0.5 rounded bg-gray-100 text-sm font-mono`} {...props}>
{children}
</code>
);
}
}}
>
{reasoningContent}
</ReactMarkdown>
</div>
)}
</div>
);
};
export default ReasoningContent;

View file

@ -0,0 +1,80 @@
import React from "react";
import { Tooltip } from "antd";
import {
ClockCircleOutlined,
NumberOutlined,
ImportOutlined,
ExportOutlined,
ThunderboltOutlined,
BulbOutlined
} from "@ant-design/icons";
export interface TokenUsage {
completionTokens?: number;
promptTokens?: number;
totalTokens?: number;
reasoningTokens?: number;
}
interface ResponseMetricsProps {
timeToFirstToken?: number; // in milliseconds
usage?: TokenUsage;
}
const ResponseMetrics: React.FC<ResponseMetricsProps> = ({
timeToFirstToken,
usage
}) => {
if (!timeToFirstToken && !usage) return null;
return (
<div className="response-metrics mt-2 pt-2 border-t border-gray-100 text-xs text-gray-500 flex flex-wrap gap-3">
{timeToFirstToken !== undefined && (
<Tooltip title="Time to first token">
<div className="flex items-center">
<ClockCircleOutlined className="mr-1" />
<span>{(timeToFirstToken / 1000).toFixed(2)}s</span>
</div>
</Tooltip>
)}
{usage?.promptTokens !== undefined && (
<Tooltip title="Prompt tokens">
<div className="flex items-center">
<ImportOutlined className="mr-1" />
<span>In: {usage.promptTokens}</span>
</div>
</Tooltip>
)}
{usage?.completionTokens !== undefined && (
<Tooltip title="Completion tokens">
<div className="flex items-center">
<ExportOutlined className="mr-1" />
<span>Out: {usage.completionTokens}</span>
</div>
</Tooltip>
)}
{usage?.reasoningTokens !== undefined && (
<Tooltip title="Reasoning tokens">
<div className="flex items-center">
<BulbOutlined className="mr-1" />
<span>Reasoning: {usage.reasoningTokens}</span>
</div>
</Tooltip>
)}
{usage?.totalTokens !== undefined && (
<Tooltip title="Total tokens">
<div className="flex items-center">
<NumberOutlined className="mr-1" />
<span>Total: {usage.totalTokens}</span>
</div>
</Tooltip>
)}
</div>
);
};
export default ResponseMetrics;

View file

@ -1,14 +1,18 @@
import openai from "openai";
import { ChatCompletionMessageParam } from "openai/resources/chat/completions";
import { message } from "antd";
import { TokenUsage } from "../ResponseMetrics";
export async function makeOpenAIChatCompletionRequest(
chatHistory: { role: string; content: string }[],
updateUI: (chunk: string, model: string) => void,
updateUI: (chunk: string, model?: string) => void,
selectedModel: string,
accessToken: string,
tags?: string[],
signal?: AbortSignal
signal?: AbortSignal,
onReasoningContent?: (content: string) => void,
onTimingData?: (timeToFirstToken: number) => void,
onUsageData?: (usage: TokenUsage) => void
) {
// base url should be the current base_url
const isLocal = process.env.NODE_ENV === "development";
@ -20,23 +24,85 @@ export async function makeOpenAIChatCompletionRequest(
? "http://localhost:4000"
: window.location.origin;
const client = new openai.OpenAI({
apiKey: accessToken, // Replace with your OpenAI API key
baseURL: proxyBaseUrl, // Replace with your OpenAI API base URL
dangerouslyAllowBrowser: true, // using a temporary litellm proxy key
apiKey: accessToken,
baseURL: proxyBaseUrl,
dangerouslyAllowBrowser: true,
defaultHeaders: tags && tags.length > 0 ? { 'x-litellm-tags': tags.join(',') } : undefined,
});
try {
const startTime = Date.now();
let firstTokenReceived = false;
let timeToFirstToken: number | undefined = undefined;
// For collecting complete response text
let fullResponseContent = "";
let fullReasoningContent = "";
const response = await client.chat.completions.create({
model: selectedModel,
stream: true,
stream_options: {
include_usage: true,
},
messages: chatHistory as ChatCompletionMessageParam[],
}, { signal });
for await (const chunk of response) {
console.log(chunk);
if (chunk.choices[0].delta.content) {
updateUI(chunk.choices[0].delta.content, chunk.model);
console.log("Stream chunk:", chunk);
// Process content and measure time to first token
const delta = chunk.choices[0]?.delta as any;
// Debug what's in the delta
console.log("Delta content:", chunk.choices[0]?.delta?.content);
console.log("Delta reasoning content:", delta?.reasoning_content);
// Measure time to first token for either content or reasoning_content
if (!firstTokenReceived && (chunk.choices[0]?.delta?.content || (delta && delta.reasoning_content))) {
firstTokenReceived = true;
timeToFirstToken = Date.now() - startTime;
console.log("First token received! Time:", timeToFirstToken, "ms");
if (onTimingData) {
console.log("Calling onTimingData with:", timeToFirstToken);
onTimingData(timeToFirstToken);
} else {
console.log("onTimingData callback is not defined!");
}
}
// Process content
if (chunk.choices[0]?.delta?.content) {
const content = chunk.choices[0].delta.content;
updateUI(content, chunk.model);
fullResponseContent += content;
}
// Process reasoning content if present - using type assertion
if (delta && delta.reasoning_content) {
const reasoningContent = delta.reasoning_content;
if (onReasoningContent) {
onReasoningContent(reasoningContent);
}
fullReasoningContent += reasoningContent;
}
// Check for usage data using type assertion
const chunkWithUsage = chunk as any;
if (chunkWithUsage.usage && onUsageData) {
console.log("Usage data found:", chunkWithUsage.usage);
const usageData: TokenUsage = {
completionTokens: chunkWithUsage.usage.completion_tokens,
promptTokens: chunkWithUsage.usage.prompt_tokens,
totalTokens: chunkWithUsage.usage.total_tokens,
};
// Check for reasoning tokens
if (chunkWithUsage.usage.completion_tokens_details?.reasoning_tokens) {
usageData.reasoningTokens = chunkWithUsage.usage.completion_tokens_details.reasoning_tokens;
}
onUsageData(usageData);
}
}
} catch (error) {

View file

@ -0,0 +1,96 @@
import { TokenUsage } from "../ResponseMetrics";
export interface StreamingResponse {
id: string;
created: number;
model: string;
object: string;
system_fingerprint?: string;
choices: StreamingChoices[];
provider_specific_fields?: any;
stream_options?: any;
citations?: any;
usage?: Usage;
}
export interface StreamingChoices {
finish_reason?: string | null;
index: number;
delta: Delta;
logprobs?: any;
}
export interface Delta {
content?: string;
reasoning_content?: string;
role?: string;
function_call?: any;
tool_calls?: any;
audio?: any;
refusal?: any;
provider_specific_fields?: any;
}
export interface Usage {
completion_tokens: number;
prompt_tokens: number;
total_tokens: number;
completion_tokens_details?: {
accepted_prediction_tokens?: number;
audio_tokens?: number;
reasoning_tokens?: number;
rejected_prediction_tokens?: number;
text_tokens?: number | null;
};
prompt_tokens_details?: {
audio_tokens?: number;
cached_tokens?: number;
text_tokens?: number;
image_tokens?: number;
};
}
export interface StreamProcessCallbacks {
onContent: (content: string, model?: string) => void;
onReasoningContent: (content: string) => void;
onUsage?: (usage: TokenUsage) => void;
}
export const processStreamingResponse = (
response: StreamingResponse,
callbacks: StreamProcessCallbacks
) => {
// Extract model information if available
const model = response.model;
// Process regular content
if (response.choices && response.choices.length > 0) {
const choice = response.choices[0];
if (choice.delta?.content) {
callbacks.onContent(choice.delta.content, model);
}
// Process reasoning content if it exists
if (choice.delta?.reasoning_content) {
callbacks.onReasoningContent(choice.delta.reasoning_content);
}
}
// Process usage information if it exists and we have a handler
if (response.usage && callbacks.onUsage) {
console.log("Processing usage data:", response.usage);
const usageData: TokenUsage = {
completionTokens: response.usage.completion_tokens,
promptTokens: response.usage.prompt_tokens,
totalTokens: response.usage.total_tokens,
};
// Extract reasoning tokens if available
if (response.usage.completion_tokens_details?.reasoning_tokens) {
usageData.reasoningTokens = response.usage.completion_tokens_details.reasoning_tokens;
}
callbacks.onUsage(usageData);
}
};

View file

@ -0,0 +1,68 @@
export interface Delta {
content?: string;
reasoning_content?: string;
role?: string;
function_call?: any;
tool_calls?: any;
audio?: any;
refusal?: any;
provider_specific_fields?: any;
}
export interface CompletionTokensDetails {
accepted_prediction_tokens?: number;
audio_tokens?: number;
reasoning_tokens?: number;
rejected_prediction_tokens?: number;
text_tokens?: number | null;
}
export interface PromptTokensDetails {
audio_tokens?: number;
cached_tokens?: number;
text_tokens?: number;
image_tokens?: number;
}
export interface Usage {
completion_tokens: number;
prompt_tokens: number;
total_tokens: number;
completion_tokens_details?: CompletionTokensDetails;
prompt_tokens_details?: PromptTokensDetails;
}
export interface StreamingChoices {
finish_reason?: string | null;
index: number;
delta: Delta;
logprobs?: any;
}
export interface StreamingResponse {
id: string;
created: number;
model: string;
object: string;
system_fingerprint?: string;
choices: StreamingChoices[];
provider_specific_fields?: any;
stream_options?: any;
citations?: any;
usage?: Usage;
}
export interface MessageType {
role: string;
content: string;
model?: string;
isImage?: boolean;
reasoningContent?: string;
timeToFirstToken?: number;
usage?: {
completionTokens?: number;
promptTokens?: number;
totalTokens?: number;
reasoningTokens?: number;
};
}