(feat) working - sync semantic caching

This commit is contained in:
ishaan-jaff 2024-02-05 17:58:12 -08:00 committed by Krrish Dholakia
parent 168a2f7806
commit 80865f93b8

View file

@ -223,94 +223,161 @@ class RedisCache(BaseCache):
self.redis_client.delete(key)
class RedisSemanticCache(RedisCache):
def __init__(self, host, port, password, **kwargs):
super().__init__()
class RedisSemanticCache(BaseCache):
def __init__(
self,
host=None,
port=None,
password=None,
redis_url=None,
similarity_threshold=None,
**kwargs,
):
from redisvl.index import SearchIndex
from redisvl.query import VectorQuery
# from redis.commands.search.field import TagField, TextField, NumericField, VectorField
# from redis.commands.search.indexDefinition import IndexDefinition, IndexType
# from redis.commands.search.query import Query
print_verbose(
"redis semantic-cache initializing INDEX - litellm_semantic_cache_index"
)
if similarity_threshold is None:
raise Exception("similarity_threshold must be provided, passed None")
self.similarity_threshold = similarity_threshold
schema = {
"index": {
"name": "litellm_semantic_cache_index",
"prefix": "litellm",
"storage_type": "hash",
},
"fields": {
"text": [{"name": "response"}],
"text": [{"name": "prompt"}],
"vector": [
{
"name": "litellm_embedding",
"dims": 1536,
"distance_metric": "cosine",
"algorithm": "flat",
"datatype": "float32",
}
],
},
}
self.index = SearchIndex.from_dict(schema)
if redis_url is None:
# if no url passed, check if host, port and password are passed, if not raise an Exception
if host is None or port is None or password is None:
raise Exception(f"Redis host, port, and password must be provided")
redis_url = "redis://:" + password + "@" + host + ":" + port
print_verbose(f"redis semantic-cache redis_url: {redis_url}")
self.index.connect(redis_url=redis_url)
self.index.create(overwrite=False) # don't overwrite existing index
# INDEX_NAME = 'idx:litellm_completion_response_vss'
# DOC_PREFIX = 'bikes:'
def _get_cache_logic(self, cached_response: Any):
"""
Common 'get_cache_logic' across sync + async redis client implementations
"""
if cached_response is None:
return cached_response
# try:
# # check to see if index exists
# client.ft(INDEX_NAME).info()
# print('Index already exists!')
# except:
# # schema
# schema = (
# TextField('$.model', no_stem=True, as_name='model'),
# TextField('$.brand', no_stem=True, as_name='brand'),
# NumericField('$.price', as_name='price'),
# TagField('$.type', as_name='type'),
# TextField('$.description', as_name='description'),
# VectorField('$.description_embeddings',
# 'FLAT', {
# 'TYPE': 'FLOAT32',
# 'DIM': VECTOR_DIMENSION,
# 'DISTANCE_METRIC': 'COSINE',
# }, as_name='vector'
# ),
# )
# check if cached_response is bytes
if isinstance(cached_response, bytes):
cached_response = cached_response.decode("utf-8")
# # index Definition
# definition = IndexDefinition(prefix=[DOC_PREFIX], index_type=IndexType.JSON)
# # create Index
# client.ft(INDEX_NAME).create_index(fields=schema, definition=definition)
try:
cached_response = json.loads(
cached_response
) # Convert string to dictionary
except:
cached_response = ast.literal_eval(cached_response)
return cached_response
def set_cache(self, key, value, **kwargs):
ttl = kwargs.get("ttl", None)
print_verbose(f"Set Redis Cache: key: {key}\nValue {value}\nttl={ttl}")
try:
# get text response
# print("in redis semantic cache: value: ", value)
llm_response = value["response"]
import numpy as np
# if llm_response is a string, convert it to a dictionary
if isinstance(llm_response, str):
llm_response = json.loads(llm_response)
print_verbose(f"redis semantic-cache set_cache, kwargs: {kwargs}")
# print("converted llm_response: ", llm_response)
response = llm_response["choices"][0]["message"]["content"]
# get the prompt
messages = kwargs["messages"]
prompt = ""
for message in messages:
prompt += message["content"]
# create embedding response
# create an embedding for prompt
embedding_response = litellm.embedding(
model="text-embedding-ada-002",
input=prompt,
cache={"no-store": True, "no-cache": True},
)
embedding_response = litellm.embedding(
model="text-embedding-ada-002",
input=response,
cache={"no-store": True},
)
# get the embedding
embedding = embedding_response["data"][0]["embedding"]
raw_embedding = embedding_response["data"][0]["embedding"]
raw_embedding_dimension = len(raw_embedding)
# make the embedding a numpy array, convert to bytes
embedding_bytes = np.array(embedding, dtype=np.float32).tobytes()
value = str(value)
assert isinstance(value, str)
# print("embedding: ", raw_embedding)
key = "litellm-semantic:" + key
self.redis_client.json().set(
name=key,
path="$",
obj=json.dumps(
{
"response": response,
"embedding": raw_embedding,
"dimension": raw_embedding_dimension,
}
),
)
new_data = [
{"response": value, "prompt": prompt, "litellm_embedding": embedding_bytes}
]
stored_redis_value = self.redis_client.json().get(name=key)
# Add more data
keys = self.index.load(new_data)
# print("Stored Redis Value: ", stored_redis_value)
except Exception as e:
# print("Error occurred: ", e)
# NON blocking - notify users Redis is throwing an exception
logging.debug("LiteLLM Caching: set() - Got exception from REDIS : ", e)
pass
def get_cache(self, key, **kwargs):
print_verbose(f"redis semantic-cache get_cache, kwargs: {kwargs}")
from redisvl.query import VectorQuery
import numpy as np
# query
# get the messages
messages = kwargs["messages"]
prompt = ""
for message in messages:
prompt += message["content"]
# convert to embedding
embedding_response = litellm.embedding(
model="text-embedding-ada-002",
input=prompt,
cache={"no-store": True, "no-cache": True},
)
# get the embedding
embedding = embedding_response["data"][0]["embedding"]
query = VectorQuery(
vector=embedding,
vector_field_name="litellm_embedding",
return_fields=["response", "prompt", "vector_distance"],
num_results=1,
)
results = self.index.query(query)
vector_distance = results[0]["vector_distance"]
vector_distance = float(vector_distance)
similarity = 1 - vector_distance
cached_prompt = results[0]["prompt"]
# check similarity, if more than self.similarity_threshold, return results
print_verbose(
f"semantic cache: similarity threshold: {self.similarity_threshold}, similarity: {similarity}, prompt: {prompt}, closest_cached_prompt: {cached_prompt}"
)
if similarity > self.similarity_threshold:
# cache hit !
cached_value = results[0]["response"]
print_verbose(
f"got a cache hit, similarity: {similarity}, Current prompt: {prompt}, cached_prompt: {cached_prompt}"
)
return self._get_cache_logic(cached_response=cached_value)
else:
# cache miss !
return None
pass
async def async_set_cache(self, key, value, **kwargs):
@ -527,6 +594,7 @@ class Cache:
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
similarity_threshold: Optional[float] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding"]]
] = ["completion", "acompletion", "embedding", "aembedding"],
@ -547,10 +615,12 @@ class Cache:
Initializes the cache based on the given type.
Args:
type (str, optional): The type of cache to initialize. Can be "local" or "redis". Defaults to "local".
type (str, optional): The type of cache to initialize. Can be "local", "redis", "redis-semantic", or "s3". Defaults to "local".
host (str, optional): The host address for the Redis cache. Required if type is "redis".
port (int, optional): The port number for the Redis cache. Required if type is "redis".
password (str, optional): The password for the Redis cache. Required if type is "redis".
similarity_threshold (float, optional): The similarity threshold for semantic-caching, Required if type is "redis-semantic"
supported_call_types (list, optional): List of call types to cache for. Defaults to cache == on for all call types.
**kwargs: Additional keyword arguments for redis.Redis() cache
@ -563,7 +633,13 @@ class Cache:
if type == "redis":
self.cache: BaseCache = RedisCache(host, port, password, **kwargs)
elif type == "redis-semantic":
self.cache = RedisSemanticCache(host, port, password, **kwargs)
self.cache = RedisSemanticCache(
host,
port,
password,
similarity_threshold=similarity_threshold,
**kwargs,
)
elif type == "local":
self.cache = InMemoryCache()
elif type == "s3":
@ -743,6 +819,7 @@ class Cache:
The cached result if it exists, otherwise None.
"""
try: # never block execution
messages = kwargs.get("messages", [])
if "cache_key" in kwargs:
cache_key = kwargs["cache_key"]
else:
@ -752,7 +829,7 @@ class Cache:
max_age = cache_control_args.get(
"s-max-age", cache_control_args.get("s-maxage", float("inf"))
)
cached_result = self.cache.get_cache(cache_key)
cached_result = self.cache.get_cache(cache_key, messages=messages)
return self._get_cache_logic(
cached_result=cached_result, max_age=max_age
)