diff --git a/litellm/tests/test_function_calling.py b/litellm/tests/test_function_calling.py index ffef8f6594..0d2aad59bc 100644 --- a/litellm/tests/test_function_calling.py +++ b/litellm/tests/test_function_calling.py @@ -219,3 +219,95 @@ def test_parallel_function_call_stream(): # test_parallel_function_call_stream() + + +def test_groq_parallel_function_call(): + litellm.set_verbose = True + try: + # Step 1: send the conversation and available functions to the model + messages = [ + { + "role": "system", + "content": "You are a function calling LLM that uses the data extracted from get_current_weather to answer questions about the weather in San Francisco.", + }, + { + "role": "user", + "content": "What's the weather like in San Francisco?", + }, + ] + tools = [ + { + "type": "function", + "function": { + "name": "get_current_weather", + "description": "Get the current weather in a given location", + "parameters": { + "type": "object", + "properties": { + "location": { + "type": "string", + "description": "The city and state, e.g. San Francisco, CA", + }, + "unit": { + "type": "string", + "enum": ["celsius", "fahrenheit"], + }, + }, + "required": ["location"], + }, + }, + } + ] + response = litellm.completion( + model="groq/llama2-70b-4096", + messages=messages, + tools=tools, + tool_choice="auto", # auto is default, but we'll be explicit + ) + print("Response\n", response) + response_message = response.choices[0].message + tool_calls = response_message.tool_calls + + assert isinstance(response.choices[0].message.tool_calls[0].function.name, str) + assert isinstance( + response.choices[0].message.tool_calls[0].function.arguments, str + ) + + print("length of tool calls", len(tool_calls)) + print("Expecting there to be 3 tool calls") + + # Step 2: check if the model wanted to call a function + if tool_calls: + # Step 3: call the function + # Note: the JSON response may not always be valid; be sure to handle errors + available_functions = { + "get_current_weather": get_current_weather, + } # only one function in this example, but you can have multiple + messages.append( + response_message + ) # extend conversation with assistant's reply + print("Response message\n", response_message) + # Step 4: send the info for each function call and function response to the model + for tool_call in tool_calls: + function_name = tool_call.function.name + function_to_call = available_functions[function_name] + function_args = json.loads(tool_call.function.arguments) + function_response = function_to_call( + location=function_args.get("location"), + unit=function_args.get("unit"), + ) + messages.append( + { + "tool_call_id": tool_call.id, + "role": "tool", + "name": function_name, + "content": function_response, + } + ) # extend conversation with function response + print(f"messages: {messages}") + second_response = litellm.completion( + model="groq/llama2-70b-4096", messages=messages + ) # get a new response from the model where it can see the function response + print("second response\n", second_response) + except Exception as e: + pytest.fail(f"Error occurred: {e}")