mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
(fix) track cost for semantic_caching, place on langfuse trace
This commit is contained in:
parent
4cb7759fcd
commit
8425a8ba22
1 changed files with 13 additions and 0 deletions
|
@ -427,10 +427,16 @@ class RedisSemanticCache(BaseCache):
|
||||||
else []
|
else []
|
||||||
)
|
)
|
||||||
if llm_router is not None and self.embedding_model in router_model_names:
|
if llm_router is not None and self.embedding_model in router_model_names:
|
||||||
|
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
|
||||||
embedding_response = await llm_router.aembedding(
|
embedding_response = await llm_router.aembedding(
|
||||||
model=self.embedding_model,
|
model=self.embedding_model,
|
||||||
input=prompt,
|
input=prompt,
|
||||||
cache={"no-store": True, "no-cache": True},
|
cache={"no-store": True, "no-cache": True},
|
||||||
|
metadata={
|
||||||
|
"user_api_key": user_api_key,
|
||||||
|
"semantic-cache-embedding": True,
|
||||||
|
"trace_id": kwargs.get("metadata", {}).get("trace_id", None),
|
||||||
|
},
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
# convert to embedding
|
# convert to embedding
|
||||||
|
@ -476,13 +482,20 @@ class RedisSemanticCache(BaseCache):
|
||||||
else []
|
else []
|
||||||
)
|
)
|
||||||
if llm_router is not None and self.embedding_model in router_model_names:
|
if llm_router is not None and self.embedding_model in router_model_names:
|
||||||
|
user_api_key = kwargs.get("metadata", {}).get("user_api_key", "")
|
||||||
embedding_response = await llm_router.aembedding(
|
embedding_response = await llm_router.aembedding(
|
||||||
model=self.embedding_model,
|
model=self.embedding_model,
|
||||||
input=prompt,
|
input=prompt,
|
||||||
cache={"no-store": True, "no-cache": True},
|
cache={"no-store": True, "no-cache": True},
|
||||||
|
metadata={
|
||||||
|
"user_api_key": user_api_key,
|
||||||
|
"semantic-cache-embedding": True,
|
||||||
|
"trace_id": kwargs.get("metadata", {}).get("trace_id", None),
|
||||||
|
},
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
# convert to embedding
|
# convert to embedding
|
||||||
|
user_api_key = kwargs["litellm_params"]["metadata"].get("user_api_key", "")
|
||||||
embedding_response = await litellm.aembedding(
|
embedding_response = await litellm.aembedding(
|
||||||
model=self.embedding_model,
|
model=self.embedding_model,
|
||||||
input=prompt,
|
input=prompt,
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue