(Refactor) /v1/messages to follow simpler logic for Anthropic API spec (#9013)

* anthropic_messages_handler v0

* fix /messages

* working messages with router methods

* test_anthropic_messages_handler_litellm_router_non_streaming

* test_anthropic_messages_litellm_router_non_streaming_with_logging

* AnthropicMessagesConfig

* _handle_anthropic_messages_response_logging

* working with /v1/messages endpoint

* working /v1/messages endpoint

* refactor to use router factory function

* use aanthropic_messages

* use BaseConfig for Anthropic /v1/messages

* track api key, team on /v1/messages endpoint

* fix get_logging_payload

* BaseAnthropicMessagesTest

* align test config

* test_anthropic_messages_with_thinking

* test_anthropic_streaming_with_thinking

* fix - display anthropic url for debugging

* test_bad_request_error_handling

* test_anthropic_messages_router_streaming_with_bad_request

* fix ProxyException

* test_bad_request_error_handling_streaming

* use provider_specific_header

* test_anthropic_messages_with_extra_headers

* test_anthropic_messages_to_wildcard_model

* fix gcs pub sub test

* standard_logging_payload

* fix unit testing for anthopic /v1/messages support

* fix pass through anthropic messages api

* delete dead code

* fix anthropic pass through response

* revert change to spend tracking utils

* fix get_litellm_metadata_from_kwargs

* fix spend logs payload json

* proxy_pass_through_endpoint_tests

* TestAnthropicPassthroughBasic

* fix pass through tests

* test_async_vertex_proxy_route_api_key_auth

* _handle_anthropic_messages_response_logging

* vertex_credentials

* test_set_default_vertex_config

* test_anthropic_messages_litellm_router_non_streaming_with_logging

* test_ageneric_api_call_with_fallbacks_basic

* test__aadapter_completion
This commit is contained in:
Ishaan Jaff 2025-03-06 00:43:08 -08:00 committed by GitHub
parent 5ab29de9d1
commit 84a83f8c51
25 changed files with 1581 additions and 1027 deletions

View file

@ -120,6 +120,7 @@ from litellm.proxy._types import *
from litellm.proxy.analytics_endpoints.analytics_endpoints import (
router as analytics_router,
)
from litellm.proxy.anthropic_endpoints.endpoints import router as anthropic_router
from litellm.proxy.auth.auth_checks import log_db_metrics
from litellm.proxy.auth.auth_utils import check_response_size_is_safe
from litellm.proxy.auth.handle_jwt import JWTHandler
@ -3065,58 +3066,6 @@ async def async_data_generator(
yield f"data: {error_returned}\n\n"
async def async_data_generator_anthropic(
response, user_api_key_dict: UserAPIKeyAuth, request_data: dict
):
verbose_proxy_logger.debug("inside generator")
try:
time.time()
async for chunk in response:
verbose_proxy_logger.debug(
"async_data_generator: received streaming chunk - {}".format(chunk)
)
### CALL HOOKS ### - modify outgoing data
chunk = await proxy_logging_obj.async_post_call_streaming_hook(
user_api_key_dict=user_api_key_dict, response=chunk
)
event_type = chunk.get("type")
try:
yield f"event: {event_type}\ndata:{json.dumps(chunk)}\n\n"
except Exception as e:
yield f"event: {event_type}\ndata:{str(e)}\n\n"
except Exception as e:
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.async_data_generator(): Exception occured - {}".format(
str(e)
)
)
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict,
original_exception=e,
request_data=request_data,
)
verbose_proxy_logger.debug(
f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`"
)
if isinstance(e, HTTPException):
raise e
else:
error_traceback = traceback.format_exc()
error_msg = f"{str(e)}\n\n{error_traceback}"
proxy_exception = ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
error_returned = json.dumps({"error": proxy_exception.to_dict()})
yield f"data: {error_returned}\n\n"
def select_data_generator(
response, user_api_key_dict: UserAPIKeyAuth, request_data: dict
):
@ -5524,224 +5473,6 @@ async def moderations(
)
#### ANTHROPIC ENDPOINTS ####
@router.post(
"/v1/messages",
tags=["[beta] Anthropic `/v1/messages`"],
dependencies=[Depends(user_api_key_auth)],
response_model=AnthropicResponse,
include_in_schema=False,
)
async def anthropic_response( # noqa: PLR0915
anthropic_data: AnthropicMessagesRequest,
fastapi_response: Response,
request: Request,
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
):
"""
🚨 DEPRECATED ENDPOINT🚨
Use `{PROXY_BASE_URL}/anthropic/v1/messages` instead - [Docs](https://docs.litellm.ai/docs/anthropic_completion).
This was a BETA endpoint that calls 100+ LLMs in the anthropic format.
"""
from litellm import adapter_completion
from litellm.adapters.anthropic_adapter import anthropic_adapter
litellm.adapters = [{"id": "anthropic", "adapter": anthropic_adapter}]
global user_temperature, user_request_timeout, user_max_tokens, user_api_base
request_data = await _read_request_body(request=request)
data: dict = {**request_data, "adapter_id": "anthropic"}
try:
data["model"] = (
general_settings.get("completion_model", None) # server default
or user_model # model name passed via cli args
or data.get("model", None) # default passed in http request
)
if user_model:
data["model"] = user_model
data = await add_litellm_data_to_request(
data=data, # type: ignore
request=request,
general_settings=general_settings,
user_api_key_dict=user_api_key_dict,
version=version,
proxy_config=proxy_config,
)
# override with user settings, these are params passed via cli
if user_temperature:
data["temperature"] = user_temperature
if user_request_timeout:
data["request_timeout"] = user_request_timeout
if user_max_tokens:
data["max_tokens"] = user_max_tokens
if user_api_base:
data["api_base"] = user_api_base
### MODEL ALIAS MAPPING ###
# check if model name in model alias map
# get the actual model name
if data["model"] in litellm.model_alias_map:
data["model"] = litellm.model_alias_map[data["model"]]
### CALL HOOKS ### - modify incoming data before calling the model
data = await proxy_logging_obj.pre_call_hook( # type: ignore
user_api_key_dict=user_api_key_dict, data=data, call_type="text_completion"
)
### ROUTE THE REQUESTs ###
router_model_names = llm_router.model_names if llm_router is not None else []
# skip router if user passed their key
if "api_key" in data:
llm_response = asyncio.create_task(litellm.aadapter_completion(**data))
elif (
llm_router is not None and data["model"] in router_model_names
): # model in router model list
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
elif (
llm_router is not None
and llm_router.model_group_alias is not None
and data["model"] in llm_router.model_group_alias
): # model set in model_group_alias
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
elif (
llm_router is not None and data["model"] in llm_router.deployment_names
): # model in router deployments, calling a specific deployment on the router
llm_response = asyncio.create_task(
llm_router.aadapter_completion(**data, specific_deployment=True)
)
elif (
llm_router is not None and data["model"] in llm_router.get_model_ids()
): # model in router model list
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
elif (
llm_router is not None
and data["model"] not in router_model_names
and (
llm_router.default_deployment is not None
or len(llm_router.pattern_router.patterns) > 0
)
): # model in router deployments, calling a specific deployment on the router
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
elif user_model is not None: # `litellm --model <your-model-name>`
llm_response = asyncio.create_task(litellm.aadapter_completion(**data))
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail={
"error": "completion: Invalid model name passed in model="
+ data.get("model", "")
},
)
# Await the llm_response task
response = await llm_response
hidden_params = getattr(response, "_hidden_params", {}) or {}
model_id = hidden_params.get("model_id", None) or ""
cache_key = hidden_params.get("cache_key", None) or ""
api_base = hidden_params.get("api_base", None) or ""
response_cost = hidden_params.get("response_cost", None) or ""
### ALERTING ###
asyncio.create_task(
proxy_logging_obj.update_request_status(
litellm_call_id=data.get("litellm_call_id", ""), status="success"
)
)
verbose_proxy_logger.debug("final response: %s", response)
fastapi_response.headers.update(
get_custom_headers(
user_api_key_dict=user_api_key_dict,
model_id=model_id,
cache_key=cache_key,
api_base=api_base,
version=version,
response_cost=response_cost,
request_data=data,
hidden_params=hidden_params,
)
)
if (
"stream" in data and data["stream"] is True
): # use generate_responses to stream responses
selected_data_generator = async_data_generator_anthropic(
response=response,
user_api_key_dict=user_api_key_dict,
request_data=data,
)
return StreamingResponse(
selected_data_generator,
media_type="text/event-stream",
)
verbose_proxy_logger.info("\nResponse from Litellm:\n{}".format(response))
return response
except RejectedRequestError as e:
_data = e.request_data
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict,
original_exception=e,
request_data=_data,
)
if _data.get("stream", None) is not None and _data["stream"] is True:
_chat_response = litellm.ModelResponse()
_usage = litellm.Usage(
prompt_tokens=0,
completion_tokens=0,
total_tokens=0,
)
_chat_response.usage = _usage # type: ignore
_chat_response.choices[0].message.content = e.message # type: ignore
_iterator = litellm.utils.ModelResponseIterator(
model_response=_chat_response, convert_to_delta=True
)
_streaming_response = litellm.TextCompletionStreamWrapper(
completion_stream=_iterator,
model=_data.get("model", ""),
)
selected_data_generator = select_data_generator(
response=_streaming_response,
user_api_key_dict=user_api_key_dict,
request_data=data,
)
return StreamingResponse(
selected_data_generator,
media_type="text/event-stream",
headers={},
)
else:
_response = litellm.TextCompletionResponse()
_response.choices[0].text = e.message
return _response
except Exception as e:
await proxy_logging_obj.post_call_failure_hook(
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
)
verbose_proxy_logger.exception(
"litellm.proxy.proxy_server.anthropic_response(): Exception occured - {}".format(
str(e)
)
)
error_msg = f"{str(e)}"
raise ProxyException(
message=getattr(e, "message", error_msg),
type=getattr(e, "type", "None"),
param=getattr(e, "param", "None"),
code=getattr(e, "status_code", 500),
)
#### DEV UTILS ####
# @router.get(
@ -8840,6 +8571,7 @@ app.include_router(rerank_router)
app.include_router(fine_tuning_router)
app.include_router(vertex_router)
app.include_router(llm_passthrough_router)
app.include_router(anthropic_router)
app.include_router(langfuse_router)
app.include_router(pass_through_router)
app.include_router(health_router)