mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
(Refactor) /v1/messages
to follow simpler logic for Anthropic API spec (#9013)
* anthropic_messages_handler v0 * fix /messages * working messages with router methods * test_anthropic_messages_handler_litellm_router_non_streaming * test_anthropic_messages_litellm_router_non_streaming_with_logging * AnthropicMessagesConfig * _handle_anthropic_messages_response_logging * working with /v1/messages endpoint * working /v1/messages endpoint * refactor to use router factory function * use aanthropic_messages * use BaseConfig for Anthropic /v1/messages * track api key, team on /v1/messages endpoint * fix get_logging_payload * BaseAnthropicMessagesTest * align test config * test_anthropic_messages_with_thinking * test_anthropic_streaming_with_thinking * fix - display anthropic url for debugging * test_bad_request_error_handling * test_anthropic_messages_router_streaming_with_bad_request * fix ProxyException * test_bad_request_error_handling_streaming * use provider_specific_header * test_anthropic_messages_with_extra_headers * test_anthropic_messages_to_wildcard_model * fix gcs pub sub test * standard_logging_payload * fix unit testing for anthopic /v1/messages support * fix pass through anthropic messages api * delete dead code * fix anthropic pass through response * revert change to spend tracking utils * fix get_litellm_metadata_from_kwargs * fix spend logs payload json * proxy_pass_through_endpoint_tests * TestAnthropicPassthroughBasic * fix pass through tests * test_async_vertex_proxy_route_api_key_auth * _handle_anthropic_messages_response_logging * vertex_credentials * test_set_default_vertex_config * test_anthropic_messages_litellm_router_non_streaming_with_logging * test_ageneric_api_call_with_fallbacks_basic * test__aadapter_completion
This commit is contained in:
parent
5ab29de9d1
commit
84a83f8c51
25 changed files with 1581 additions and 1027 deletions
|
@ -120,6 +120,7 @@ from litellm.proxy._types import *
|
|||
from litellm.proxy.analytics_endpoints.analytics_endpoints import (
|
||||
router as analytics_router,
|
||||
)
|
||||
from litellm.proxy.anthropic_endpoints.endpoints import router as anthropic_router
|
||||
from litellm.proxy.auth.auth_checks import log_db_metrics
|
||||
from litellm.proxy.auth.auth_utils import check_response_size_is_safe
|
||||
from litellm.proxy.auth.handle_jwt import JWTHandler
|
||||
|
@ -3065,58 +3066,6 @@ async def async_data_generator(
|
|||
yield f"data: {error_returned}\n\n"
|
||||
|
||||
|
||||
async def async_data_generator_anthropic(
|
||||
response, user_api_key_dict: UserAPIKeyAuth, request_data: dict
|
||||
):
|
||||
verbose_proxy_logger.debug("inside generator")
|
||||
try:
|
||||
time.time()
|
||||
async for chunk in response:
|
||||
verbose_proxy_logger.debug(
|
||||
"async_data_generator: received streaming chunk - {}".format(chunk)
|
||||
)
|
||||
### CALL HOOKS ### - modify outgoing data
|
||||
chunk = await proxy_logging_obj.async_post_call_streaming_hook(
|
||||
user_api_key_dict=user_api_key_dict, response=chunk
|
||||
)
|
||||
|
||||
event_type = chunk.get("type")
|
||||
|
||||
try:
|
||||
yield f"event: {event_type}\ndata:{json.dumps(chunk)}\n\n"
|
||||
except Exception as e:
|
||||
yield f"event: {event_type}\ndata:{str(e)}\n\n"
|
||||
except Exception as e:
|
||||
verbose_proxy_logger.exception(
|
||||
"litellm.proxy.proxy_server.async_data_generator(): Exception occured - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
original_exception=e,
|
||||
request_data=request_data,
|
||||
)
|
||||
verbose_proxy_logger.debug(
|
||||
f"\033[1;31mAn error occurred: {e}\n\n Debug this by setting `--debug`, e.g. `litellm --model gpt-3.5-turbo --debug`"
|
||||
)
|
||||
|
||||
if isinstance(e, HTTPException):
|
||||
raise e
|
||||
else:
|
||||
error_traceback = traceback.format_exc()
|
||||
error_msg = f"{str(e)}\n\n{error_traceback}"
|
||||
|
||||
proxy_exception = ProxyException(
|
||||
message=getattr(e, "message", error_msg),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", 500),
|
||||
)
|
||||
error_returned = json.dumps({"error": proxy_exception.to_dict()})
|
||||
yield f"data: {error_returned}\n\n"
|
||||
|
||||
|
||||
def select_data_generator(
|
||||
response, user_api_key_dict: UserAPIKeyAuth, request_data: dict
|
||||
):
|
||||
|
@ -5524,224 +5473,6 @@ async def moderations(
|
|||
)
|
||||
|
||||
|
||||
#### ANTHROPIC ENDPOINTS ####
|
||||
|
||||
|
||||
@router.post(
|
||||
"/v1/messages",
|
||||
tags=["[beta] Anthropic `/v1/messages`"],
|
||||
dependencies=[Depends(user_api_key_auth)],
|
||||
response_model=AnthropicResponse,
|
||||
include_in_schema=False,
|
||||
)
|
||||
async def anthropic_response( # noqa: PLR0915
|
||||
anthropic_data: AnthropicMessagesRequest,
|
||||
fastapi_response: Response,
|
||||
request: Request,
|
||||
user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
|
||||
):
|
||||
"""
|
||||
🚨 DEPRECATED ENDPOINT🚨
|
||||
|
||||
Use `{PROXY_BASE_URL}/anthropic/v1/messages` instead - [Docs](https://docs.litellm.ai/docs/anthropic_completion).
|
||||
|
||||
This was a BETA endpoint that calls 100+ LLMs in the anthropic format.
|
||||
"""
|
||||
from litellm import adapter_completion
|
||||
from litellm.adapters.anthropic_adapter import anthropic_adapter
|
||||
|
||||
litellm.adapters = [{"id": "anthropic", "adapter": anthropic_adapter}]
|
||||
|
||||
global user_temperature, user_request_timeout, user_max_tokens, user_api_base
|
||||
request_data = await _read_request_body(request=request)
|
||||
data: dict = {**request_data, "adapter_id": "anthropic"}
|
||||
try:
|
||||
data["model"] = (
|
||||
general_settings.get("completion_model", None) # server default
|
||||
or user_model # model name passed via cli args
|
||||
or data.get("model", None) # default passed in http request
|
||||
)
|
||||
if user_model:
|
||||
data["model"] = user_model
|
||||
|
||||
data = await add_litellm_data_to_request(
|
||||
data=data, # type: ignore
|
||||
request=request,
|
||||
general_settings=general_settings,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
version=version,
|
||||
proxy_config=proxy_config,
|
||||
)
|
||||
|
||||
# override with user settings, these are params passed via cli
|
||||
if user_temperature:
|
||||
data["temperature"] = user_temperature
|
||||
if user_request_timeout:
|
||||
data["request_timeout"] = user_request_timeout
|
||||
if user_max_tokens:
|
||||
data["max_tokens"] = user_max_tokens
|
||||
if user_api_base:
|
||||
data["api_base"] = user_api_base
|
||||
|
||||
### MODEL ALIAS MAPPING ###
|
||||
# check if model name in model alias map
|
||||
# get the actual model name
|
||||
if data["model"] in litellm.model_alias_map:
|
||||
data["model"] = litellm.model_alias_map[data["model"]]
|
||||
|
||||
### CALL HOOKS ### - modify incoming data before calling the model
|
||||
data = await proxy_logging_obj.pre_call_hook( # type: ignore
|
||||
user_api_key_dict=user_api_key_dict, data=data, call_type="text_completion"
|
||||
)
|
||||
|
||||
### ROUTE THE REQUESTs ###
|
||||
router_model_names = llm_router.model_names if llm_router is not None else []
|
||||
# skip router if user passed their key
|
||||
if "api_key" in data:
|
||||
llm_response = asyncio.create_task(litellm.aadapter_completion(**data))
|
||||
elif (
|
||||
llm_router is not None and data["model"] in router_model_names
|
||||
): # model in router model list
|
||||
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
|
||||
elif (
|
||||
llm_router is not None
|
||||
and llm_router.model_group_alias is not None
|
||||
and data["model"] in llm_router.model_group_alias
|
||||
): # model set in model_group_alias
|
||||
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
|
||||
elif (
|
||||
llm_router is not None and data["model"] in llm_router.deployment_names
|
||||
): # model in router deployments, calling a specific deployment on the router
|
||||
llm_response = asyncio.create_task(
|
||||
llm_router.aadapter_completion(**data, specific_deployment=True)
|
||||
)
|
||||
elif (
|
||||
llm_router is not None and data["model"] in llm_router.get_model_ids()
|
||||
): # model in router model list
|
||||
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
|
||||
elif (
|
||||
llm_router is not None
|
||||
and data["model"] not in router_model_names
|
||||
and (
|
||||
llm_router.default_deployment is not None
|
||||
or len(llm_router.pattern_router.patterns) > 0
|
||||
)
|
||||
): # model in router deployments, calling a specific deployment on the router
|
||||
llm_response = asyncio.create_task(llm_router.aadapter_completion(**data))
|
||||
elif user_model is not None: # `litellm --model <your-model-name>`
|
||||
llm_response = asyncio.create_task(litellm.aadapter_completion(**data))
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail={
|
||||
"error": "completion: Invalid model name passed in model="
|
||||
+ data.get("model", "")
|
||||
},
|
||||
)
|
||||
|
||||
# Await the llm_response task
|
||||
response = await llm_response
|
||||
|
||||
hidden_params = getattr(response, "_hidden_params", {}) or {}
|
||||
model_id = hidden_params.get("model_id", None) or ""
|
||||
cache_key = hidden_params.get("cache_key", None) or ""
|
||||
api_base = hidden_params.get("api_base", None) or ""
|
||||
response_cost = hidden_params.get("response_cost", None) or ""
|
||||
|
||||
### ALERTING ###
|
||||
asyncio.create_task(
|
||||
proxy_logging_obj.update_request_status(
|
||||
litellm_call_id=data.get("litellm_call_id", ""), status="success"
|
||||
)
|
||||
)
|
||||
|
||||
verbose_proxy_logger.debug("final response: %s", response)
|
||||
|
||||
fastapi_response.headers.update(
|
||||
get_custom_headers(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
model_id=model_id,
|
||||
cache_key=cache_key,
|
||||
api_base=api_base,
|
||||
version=version,
|
||||
response_cost=response_cost,
|
||||
request_data=data,
|
||||
hidden_params=hidden_params,
|
||||
)
|
||||
)
|
||||
|
||||
if (
|
||||
"stream" in data and data["stream"] is True
|
||||
): # use generate_responses to stream responses
|
||||
selected_data_generator = async_data_generator_anthropic(
|
||||
response=response,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
request_data=data,
|
||||
)
|
||||
return StreamingResponse(
|
||||
selected_data_generator,
|
||||
media_type="text/event-stream",
|
||||
)
|
||||
|
||||
verbose_proxy_logger.info("\nResponse from Litellm:\n{}".format(response))
|
||||
return response
|
||||
except RejectedRequestError as e:
|
||||
_data = e.request_data
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
original_exception=e,
|
||||
request_data=_data,
|
||||
)
|
||||
if _data.get("stream", None) is not None and _data["stream"] is True:
|
||||
_chat_response = litellm.ModelResponse()
|
||||
_usage = litellm.Usage(
|
||||
prompt_tokens=0,
|
||||
completion_tokens=0,
|
||||
total_tokens=0,
|
||||
)
|
||||
_chat_response.usage = _usage # type: ignore
|
||||
_chat_response.choices[0].message.content = e.message # type: ignore
|
||||
_iterator = litellm.utils.ModelResponseIterator(
|
||||
model_response=_chat_response, convert_to_delta=True
|
||||
)
|
||||
_streaming_response = litellm.TextCompletionStreamWrapper(
|
||||
completion_stream=_iterator,
|
||||
model=_data.get("model", ""),
|
||||
)
|
||||
|
||||
selected_data_generator = select_data_generator(
|
||||
response=_streaming_response,
|
||||
user_api_key_dict=user_api_key_dict,
|
||||
request_data=data,
|
||||
)
|
||||
|
||||
return StreamingResponse(
|
||||
selected_data_generator,
|
||||
media_type="text/event-stream",
|
||||
headers={},
|
||||
)
|
||||
else:
|
||||
_response = litellm.TextCompletionResponse()
|
||||
_response.choices[0].text = e.message
|
||||
return _response
|
||||
except Exception as e:
|
||||
await proxy_logging_obj.post_call_failure_hook(
|
||||
user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
|
||||
)
|
||||
verbose_proxy_logger.exception(
|
||||
"litellm.proxy.proxy_server.anthropic_response(): Exception occured - {}".format(
|
||||
str(e)
|
||||
)
|
||||
)
|
||||
error_msg = f"{str(e)}"
|
||||
raise ProxyException(
|
||||
message=getattr(e, "message", error_msg),
|
||||
type=getattr(e, "type", "None"),
|
||||
param=getattr(e, "param", "None"),
|
||||
code=getattr(e, "status_code", 500),
|
||||
)
|
||||
|
||||
|
||||
#### DEV UTILS ####
|
||||
|
||||
# @router.get(
|
||||
|
@ -8840,6 +8571,7 @@ app.include_router(rerank_router)
|
|||
app.include_router(fine_tuning_router)
|
||||
app.include_router(vertex_router)
|
||||
app.include_router(llm_passthrough_router)
|
||||
app.include_router(anthropic_router)
|
||||
app.include_router(langfuse_router)
|
||||
app.include_router(pass_through_router)
|
||||
app.include_router(health_router)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue