mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
refactor(main.py): migrate vertex gemini calls to vertex_httpx
Completes migration to vertex_httpx
This commit is contained in:
parent
e835f7336a
commit
86596c53e9
6 changed files with 159 additions and 206 deletions
|
@ -800,8 +800,12 @@ from .llms.gemini import GeminiConfig
|
|||
from .llms.nlp_cloud import NLPCloudConfig
|
||||
from .llms.aleph_alpha import AlephAlphaConfig
|
||||
from .llms.petals import PetalsConfig
|
||||
from .llms.vertex_httpx import VertexGeminiConfig, GoogleAIStudioGeminiConfig
|
||||
from .llms.vertex_ai import VertexAIConfig, VertexAITextEmbeddingConfig
|
||||
from .llms.vertex_httpx import (
|
||||
VertexGeminiConfig,
|
||||
GoogleAIStudioGeminiConfig,
|
||||
VertexAIConfig,
|
||||
)
|
||||
from .llms.vertex_ai import VertexAITextEmbeddingConfig
|
||||
from .llms.vertex_ai_anthropic import VertexAIAnthropicConfig
|
||||
from .llms.sagemaker import SagemakerConfig
|
||||
from .llms.ollama import OllamaConfig
|
||||
|
|
|
@ -42,201 +42,6 @@ class VertexAIError(Exception):
|
|||
) # Call the base class constructor with the parameters it needs
|
||||
|
||||
|
||||
class ExtendedGenerationConfig(dict):
|
||||
"""Extended parameters for the generation."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
top_k: Optional[int] = None,
|
||||
candidate_count: Optional[int] = None,
|
||||
max_output_tokens: Optional[int] = None,
|
||||
stop_sequences: Optional[List[str]] = None,
|
||||
response_mime_type: Optional[str] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
):
|
||||
super().__init__(
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
top_k=top_k,
|
||||
candidate_count=candidate_count,
|
||||
max_output_tokens=max_output_tokens,
|
||||
stop_sequences=stop_sequences,
|
||||
response_mime_type=response_mime_type,
|
||||
frequency_penalty=frequency_penalty,
|
||||
presence_penalty=presence_penalty,
|
||||
)
|
||||
|
||||
|
||||
class VertexAIConfig:
|
||||
"""
|
||||
Reference: https://cloud.google.com/vertex-ai/docs/generative-ai/chat/test-chat-prompts
|
||||
Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
|
||||
|
||||
The class `VertexAIConfig` provides configuration for the VertexAI's API interface. Below are the parameters:
|
||||
|
||||
- `temperature` (float): This controls the degree of randomness in token selection.
|
||||
|
||||
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.
|
||||
|
||||
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.
|
||||
|
||||
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.
|
||||
|
||||
- `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'.
|
||||
|
||||
- `candidate_count` (int): Number of generated responses to return.
|
||||
|
||||
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response.
|
||||
|
||||
- `frequency_penalty` (float): This parameter is used to penalize the model from repeating the same output. The default value is 0.0.
|
||||
|
||||
- `presence_penalty` (float): This parameter is used to penalize the model from generating the same output as the input. The default value is 0.0.
|
||||
|
||||
Note: Please make sure to modify the default parameters as required for your use case.
|
||||
"""
|
||||
|
||||
temperature: Optional[float] = None
|
||||
max_output_tokens: Optional[int] = None
|
||||
top_p: Optional[float] = None
|
||||
top_k: Optional[int] = None
|
||||
response_mime_type: Optional[str] = None
|
||||
candidate_count: Optional[int] = None
|
||||
stop_sequences: Optional[list] = None
|
||||
frequency_penalty: Optional[float] = None
|
||||
presence_penalty: Optional[float] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
temperature: Optional[float] = None,
|
||||
max_output_tokens: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
top_k: Optional[int] = None,
|
||||
response_mime_type: Optional[str] = None,
|
||||
candidate_count: Optional[int] = None,
|
||||
stop_sequences: Optional[list] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self):
|
||||
return [
|
||||
"temperature",
|
||||
"top_p",
|
||||
"max_tokens",
|
||||
"stream",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"response_format",
|
||||
"n",
|
||||
"stop",
|
||||
"extra_headers",
|
||||
]
|
||||
|
||||
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||
for param, value in non_default_params.items():
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
if (
|
||||
param == "stream" and value == True
|
||||
): # sending stream = False, can cause it to get passed unchecked and raise issues
|
||||
optional_params["stream"] = value
|
||||
if param == "n":
|
||||
optional_params["candidate_count"] = value
|
||||
if param == "stop":
|
||||
if isinstance(value, str):
|
||||
optional_params["stop_sequences"] = [value]
|
||||
elif isinstance(value, list):
|
||||
optional_params["stop_sequences"] = value
|
||||
if param == "max_tokens":
|
||||
optional_params["max_output_tokens"] = value
|
||||
if param == "response_format" and value["type"] == "json_object":
|
||||
optional_params["response_mime_type"] = "application/json"
|
||||
if param == "frequency_penalty":
|
||||
optional_params["frequency_penalty"] = value
|
||||
if param == "presence_penalty":
|
||||
optional_params["presence_penalty"] = value
|
||||
if param == "tools" and isinstance(value, list):
|
||||
from vertexai.preview import generative_models
|
||||
|
||||
gtool_func_declarations = []
|
||||
for tool in value:
|
||||
gtool_func_declaration = generative_models.FunctionDeclaration(
|
||||
name=tool["function"]["name"],
|
||||
description=tool["function"].get("description", ""),
|
||||
parameters=tool["function"].get("parameters", {}),
|
||||
)
|
||||
gtool_func_declarations.append(gtool_func_declaration)
|
||||
optional_params["tools"] = [
|
||||
generative_models.Tool(
|
||||
function_declarations=gtool_func_declarations
|
||||
)
|
||||
]
|
||||
if param == "tool_choice" and (
|
||||
isinstance(value, str) or isinstance(value, dict)
|
||||
):
|
||||
pass
|
||||
return optional_params
|
||||
|
||||
def get_mapped_special_auth_params(self) -> dict:
|
||||
"""
|
||||
Common auth params across bedrock/vertex_ai/azure/watsonx
|
||||
"""
|
||||
return {"project": "vertex_project", "region_name": "vertex_location"}
|
||||
|
||||
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
|
||||
mapped_params = self.get_mapped_special_auth_params()
|
||||
|
||||
for param, value in non_default_params.items():
|
||||
if param in mapped_params:
|
||||
optional_params[mapped_params[param]] = value
|
||||
return optional_params
|
||||
|
||||
def get_eu_regions(self) -> List[str]:
|
||||
"""
|
||||
Source: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/locations#available-regions
|
||||
"""
|
||||
return [
|
||||
"europe-central2",
|
||||
"europe-north1",
|
||||
"europe-southwest1",
|
||||
"europe-west1",
|
||||
"europe-west2",
|
||||
"europe-west3",
|
||||
"europe-west4",
|
||||
"europe-west6",
|
||||
"europe-west8",
|
||||
"europe-west9",
|
||||
]
|
||||
|
||||
|
||||
import asyncio
|
||||
|
||||
|
||||
|
@ -445,6 +250,14 @@ def completion(
|
|||
logger_fn=None,
|
||||
acompletion: bool = False,
|
||||
):
|
||||
"""
|
||||
NON-GEMINI/ANTHROPIC CALLS.
|
||||
|
||||
This is the handler for OLDER PALM MODELS and VERTEX AI MODEL GARDEN
|
||||
|
||||
For Vertex AI Anthropic: `vertex_anthropic.py`
|
||||
For Gemini: `vertex_httpx.py`
|
||||
"""
|
||||
try:
|
||||
import vertexai
|
||||
except:
|
||||
|
|
|
@ -50,6 +50,111 @@ from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
|
|||
from .base import BaseLLM
|
||||
|
||||
|
||||
class VertexAIConfig:
|
||||
"""
|
||||
Reference: https://cloud.google.com/vertex-ai/docs/generative-ai/chat/test-chat-prompts
|
||||
Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference
|
||||
|
||||
The class `VertexAIConfig` provides configuration for the VertexAI's API interface. Below are the parameters:
|
||||
|
||||
- `temperature` (float): This controls the degree of randomness in token selection.
|
||||
|
||||
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.
|
||||
|
||||
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.
|
||||
|
||||
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.
|
||||
|
||||
- `response_mime_type` (str): The MIME type of the response. The default value is 'text/plain'.
|
||||
|
||||
- `candidate_count` (int): Number of generated responses to return.
|
||||
|
||||
- `stop_sequences` (List[str]): The set of character sequences (up to 5) that will stop output generation. If specified, the API will stop at the first appearance of a stop sequence. The stop sequence will not be included as part of the response.
|
||||
|
||||
- `frequency_penalty` (float): This parameter is used to penalize the model from repeating the same output. The default value is 0.0.
|
||||
|
||||
- `presence_penalty` (float): This parameter is used to penalize the model from generating the same output as the input. The default value is 0.0.
|
||||
|
||||
Note: Please make sure to modify the default parameters as required for your use case.
|
||||
"""
|
||||
|
||||
temperature: Optional[float] = None
|
||||
max_output_tokens: Optional[int] = None
|
||||
top_p: Optional[float] = None
|
||||
top_k: Optional[int] = None
|
||||
response_mime_type: Optional[str] = None
|
||||
candidate_count: Optional[int] = None
|
||||
stop_sequences: Optional[list] = None
|
||||
frequency_penalty: Optional[float] = None
|
||||
presence_penalty: Optional[float] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
temperature: Optional[float] = None,
|
||||
max_output_tokens: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
top_k: Optional[int] = None,
|
||||
response_mime_type: Optional[str] = None,
|
||||
candidate_count: Optional[int] = None,
|
||||
stop_sequences: Optional[list] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_mapped_special_auth_params(self) -> dict:
|
||||
"""
|
||||
Common auth params across bedrock/vertex_ai/azure/watsonx
|
||||
"""
|
||||
return {"project": "vertex_project", "region_name": "vertex_location"}
|
||||
|
||||
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
|
||||
mapped_params = self.get_mapped_special_auth_params()
|
||||
|
||||
for param, value in non_default_params.items():
|
||||
if param in mapped_params:
|
||||
optional_params[mapped_params[param]] = value
|
||||
return optional_params
|
||||
|
||||
def get_eu_regions(self) -> List[str]:
|
||||
"""
|
||||
Source: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/locations#available-regions
|
||||
"""
|
||||
return [
|
||||
"europe-central2",
|
||||
"europe-north1",
|
||||
"europe-southwest1",
|
||||
"europe-west1",
|
||||
"europe-west2",
|
||||
"europe-west3",
|
||||
"europe-west4",
|
||||
"europe-west6",
|
||||
"europe-west8",
|
||||
"europe-west9",
|
||||
]
|
||||
|
||||
|
||||
class GoogleAIStudioGeminiConfig: # key diff from VertexAI - 'frequency_penalty' and 'presence_penalty' not supported
|
||||
"""
|
||||
Reference: https://ai.google.dev/api/rest/v1beta/GenerationConfig
|
||||
|
@ -326,6 +431,7 @@ class VertexGeminiConfig:
|
|||
"stop",
|
||||
"frequency_penalty",
|
||||
"presence_penalty",
|
||||
"extra_headers",
|
||||
]
|
||||
|
||||
def map_tool_choice_values(
|
||||
|
@ -691,7 +797,9 @@ class VertexLLM(BaseLLM):
|
|||
)
|
||||
tools.append(_tool_response_chunk)
|
||||
|
||||
chat_completion_message["content"] = content_str
|
||||
chat_completion_message["content"] = (
|
||||
content_str if len(content_str) > 0 else None
|
||||
)
|
||||
chat_completion_message["tool_calls"] = tools
|
||||
|
||||
choice = litellm.Choices(
|
||||
|
|
|
@ -2080,6 +2080,28 @@ def completion(
|
|||
headers=headers,
|
||||
custom_prompt_dict=custom_prompt_dict,
|
||||
)
|
||||
elif "gemini" in model:
|
||||
model_response = vertex_chat_completion.completion( # type: ignore
|
||||
model=model,
|
||||
messages=messages,
|
||||
model_response=model_response,
|
||||
print_verbose=print_verbose,
|
||||
optional_params=new_params,
|
||||
litellm_params=litellm_params,
|
||||
logger_fn=logger_fn,
|
||||
encoding=encoding,
|
||||
vertex_location=vertex_ai_location,
|
||||
vertex_project=vertex_ai_project,
|
||||
vertex_credentials=vertex_credentials,
|
||||
gemini_api_key=None,
|
||||
logging_obj=logging,
|
||||
acompletion=acompletion,
|
||||
timeout=timeout,
|
||||
custom_llm_provider=custom_llm_provider,
|
||||
client=client,
|
||||
api_base=api_base,
|
||||
extra_headers=extra_headers,
|
||||
)
|
||||
else:
|
||||
model_response = vertex_ai.completion(
|
||||
model=model,
|
||||
|
@ -2099,8 +2121,8 @@ def completion(
|
|||
|
||||
if (
|
||||
"stream" in optional_params
|
||||
and optional_params["stream"] == True
|
||||
and acompletion == False
|
||||
and optional_params["stream"] is True
|
||||
and acompletion is False
|
||||
):
|
||||
response = CustomStreamWrapper(
|
||||
model_response,
|
||||
|
|
|
@ -501,7 +501,7 @@ async def test_async_vertexai_streaming_response():
|
|||
user_message = "Hello, how are you?"
|
||||
messages = [{"content": user_message, "role": "user"}]
|
||||
response = await acompletion(
|
||||
model="gemini-pro",
|
||||
model=model,
|
||||
messages=messages,
|
||||
temperature=0.7,
|
||||
timeout=5,
|
||||
|
@ -1311,6 +1311,7 @@ async def test_gemini_pro_async_function_calling():
|
|||
model="gemini-pro", messages=messages, tools=tools, tool_choice="auto"
|
||||
)
|
||||
print(f"completion: {completion}")
|
||||
print(f"message content: {completion.choices[0].message.content}")
|
||||
assert completion.choices[0].message.content is None
|
||||
assert len(completion.choices[0].message.tool_calls) == 1
|
||||
|
||||
|
|
|
@ -2824,7 +2824,6 @@ def get_optional_params(
|
|||
or model in litellm.vertex_text_models
|
||||
or model in litellm.vertex_code_text_models
|
||||
or model in litellm.vertex_language_models
|
||||
or model in litellm.vertex_embedding_models
|
||||
or model in litellm.vertex_vision_models
|
||||
):
|
||||
print_verbose(f"(start) INSIDE THE VERTEX AI OPTIONAL PARAM BLOCK")
|
||||
|
@ -2834,9 +2833,15 @@ def get_optional_params(
|
|||
)
|
||||
_check_valid_arg(supported_params=supported_params)
|
||||
|
||||
optional_params = litellm.VertexAIConfig().map_openai_params(
|
||||
optional_params = litellm.VertexGeminiConfig().map_openai_params(
|
||||
non_default_params=non_default_params,
|
||||
optional_params=optional_params,
|
||||
model=model,
|
||||
drop_params=(
|
||||
drop_params
|
||||
if drop_params is not None and isinstance(drop_params, bool)
|
||||
else False
|
||||
),
|
||||
)
|
||||
|
||||
print_verbose(
|
||||
|
@ -2852,7 +2857,7 @@ def get_optional_params(
|
|||
optional_params=optional_params,
|
||||
model=model,
|
||||
)
|
||||
elif custom_llm_provider == "vertex_ai_beta" or custom_llm_provider == "gemini":
|
||||
elif custom_llm_provider == "vertex_ai_beta":
|
||||
supported_params = get_supported_openai_params(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
|
@ -3936,12 +3941,12 @@ def get_supported_openai_params(
|
|||
return litellm.GoogleAIStudioGeminiConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "vertex_ai":
|
||||
if request_type == "chat_completion":
|
||||
return litellm.VertexAIConfig().get_supported_openai_params()
|
||||
return litellm.VertexGeminiConfig().get_supported_openai_params()
|
||||
elif request_type == "embeddings":
|
||||
return litellm.VertexAITextEmbeddingConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "vertex_ai_beta":
|
||||
if request_type == "chat_completion":
|
||||
return litellm.VertexAIConfig().get_supported_openai_params()
|
||||
return litellm.VertexGeminiConfig().get_supported_openai_params()
|
||||
elif request_type == "embeddings":
|
||||
return litellm.VertexAITextEmbeddingConfig().get_supported_openai_params()
|
||||
elif custom_llm_provider == "sagemaker":
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue