mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
(docs) update routing with api.litellm.ai
This commit is contained in:
parent
580e6dc166
commit
898f15af2b
1 changed files with 62 additions and 23 deletions
|
@ -292,23 +292,31 @@ $ litellm --test_async --num_requests 100
|
|||
- `/queue/response/{id}` - Returns the status of a job. If completed, returns the response as well. Potential status's are: `queued` and `finished`.
|
||||
|
||||
|
||||
## Hosted Router + Request Queing api.litellm.ai
|
||||
## Hosted Request Queing api.litellm.ai
|
||||
Queue your LLM API requests to ensure you're under your rate limits
|
||||
- Step 1: Make a POST request `/queue/request` (this follows the same input format as an openai `/chat/completions` call, and returns a job id).
|
||||
- Step 2: Make a GET request, `queue/response` to check if it's completed
|
||||
- Step 1: Step 1 Add a config to the proxy, generate a temp key
|
||||
- Step 2: Queue a request to the proxy, using your generated_key
|
||||
- Step 3: Poll the request
|
||||
|
||||
|
||||
## Step 1 Add a config to the proxy, generate a temp key
|
||||
```python
|
||||
import requests
|
||||
import time
|
||||
import os
|
||||
|
||||
# Set the base URL as needed
|
||||
base_url = "https://api.litellm.ai"
|
||||
|
||||
# Step 1 Add a config to the proxy, generate a temp key
|
||||
# use the same model_name to load balance
|
||||
config = {
|
||||
"model_list": [
|
||||
{
|
||||
"model_name": "gpt-3.5-turbo",
|
||||
"litellm_params": {
|
||||
"model": "gpt-3.5-turbo",
|
||||
"api_key": "sk-"
|
||||
"api_key": os.environ['OPENAI_API_KEY'],
|
||||
}
|
||||
},
|
||||
{
|
||||
|
@ -324,58 +332,73 @@ config = {
|
|||
}
|
||||
|
||||
response = requests.post(
|
||||
url = "http://0.0.0.0:8000/key/generate",
|
||||
url=f"{base_url}/key/generate",
|
||||
json={
|
||||
"config": config,
|
||||
"duration": "30d" # default to 30d, set it to 30m if you want a temp key
|
||||
"duration": "30d" # default to 30d, set it to 30m if you want a temp 30 minute key
|
||||
},
|
||||
headers={
|
||||
"Authorization": "Bearer sk-hosted-litellm"
|
||||
"Authorization": "Bearer sk-hosted-litellm" # this is the key to use api.litellm.ai
|
||||
}
|
||||
)
|
||||
|
||||
print("\nresponse from generating key", response.json())
|
||||
print("\nresponse from generating key", response.text)
|
||||
print("\n json response from gen key", response.json())
|
||||
|
||||
generated_key = response.json()["key"]
|
||||
print("\ngenerated key for proxy", generated_key)
|
||||
```
|
||||
|
||||
#### Output
|
||||
```shell
|
||||
response from generating key {"key":"sk-...,"expires":"2023-12-22T03:43:57.615000+00:00"}
|
||||
```
|
||||
|
||||
# Step 2: Queue a request to the proxy, using your generated_key
|
||||
```python
|
||||
print("Creating a job on the proxy")
|
||||
job_response = requests.post(
|
||||
url = "http://0.0.0.0:8000/queue/request",
|
||||
url=f"{base_url}/queue/request",
|
||||
json={
|
||||
'model': 'gpt-3.5-turbo',
|
||||
'messages': [
|
||||
{'role': 'system', 'content': f'You are a helpful assistant. What is your name'},
|
||||
],
|
||||
'model': 'gpt-3.5-turbo',
|
||||
'messages': [
|
||||
{'role': 'system', 'content': f'You are a helpful assistant. What is your name'},
|
||||
],
|
||||
},
|
||||
headers={
|
||||
"Authorization": f"Bearer {generated_key}"
|
||||
}
|
||||
)
|
||||
|
||||
print(job_response.status_code)
|
||||
print(job_response.text)
|
||||
print("\nResponse from creating job", job_response.text)
|
||||
job_response = job_response.json()
|
||||
job_id = job_response["id"]
|
||||
job_id = job_response["id"]
|
||||
polling_url = job_response["url"]
|
||||
polling_url = f"http://0.0.0.0:8000{polling_url}"
|
||||
polling_url = f"{base_url}{polling_url}"
|
||||
print("\nCreated Job, Polling Url", polling_url)
|
||||
```
|
||||
|
||||
#### Output
|
||||
```shell
|
||||
Response from creating job
|
||||
{"id":"0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7","url":"/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7","eta":5,"status":"queued"}
|
||||
```
|
||||
|
||||
# Step 3: Poll the request
|
||||
```python
|
||||
while True:
|
||||
try:
|
||||
print("\nPolling URL", polling_url)
|
||||
polling_response = requests.get(
|
||||
url=polling_url,
|
||||
headers={
|
||||
"Authorization": f"Bearer {generated_key}"
|
||||
}
|
||||
)
|
||||
url=polling_url,
|
||||
headers={
|
||||
"Authorization": f"Bearer {generated_key}"
|
||||
}
|
||||
)
|
||||
print("\nResponse from polling url", polling_response.text)
|
||||
polling_response = polling_response.json()
|
||||
print("\nResponse from polling url", polling_response)
|
||||
status = polling_response["status"]
|
||||
status = polling_response.get("status", None)
|
||||
if status == "finished":
|
||||
llm_response = polling_response["result"]
|
||||
print("LLM Response")
|
||||
|
@ -385,5 +408,21 @@ while True:
|
|||
except Exception as e:
|
||||
print("got exception in polling", e)
|
||||
break
|
||||
```
|
||||
|
||||
#### Output
|
||||
```shell
|
||||
Polling URL https://api.litellm.ai/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7
|
||||
|
||||
Response from polling url {"status":"queued"}
|
||||
|
||||
Polling URL https://api.litellm.ai/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7
|
||||
|
||||
Response from polling url {"status":"queued"}
|
||||
|
||||
Polling URL https://api.litellm.ai/queue/response/0e3d9e98-5d56-4d07-9cc8-c34b7e6658d7
|
||||
|
||||
Response from polling url
|
||||
{"status":"finished","result":{"id":"chatcmpl-8NYRce4IeI4NzYyodT3NNp8fk5cSW","choices":[{"finish_reason":"stop","index":0,"message":{"content":"I am an AI assistant and do not have a physical presence or personal identity. You can simply refer to me as \"Assistant.\" How may I assist you today?","role":"assistant"}}],"created":1700624639,"model":"gpt-3.5-turbo-0613","object":"chat.completion","system_fingerprint":null,"usage":{"completion_tokens":33,"prompt_tokens":17,"total_tokens":50}}}
|
||||
|
||||
```
|
Loading…
Add table
Add a link
Reference in a new issue