mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
fixes to get optional params
This commit is contained in:
parent
0ae93d1112
commit
8c48af11c2
9 changed files with 86 additions and 90 deletions
Binary file not shown.
Binary file not shown.
|
@ -56,10 +56,6 @@ def completion(
|
||||||
## COMPLETION CALL
|
## COMPLETION CALL
|
||||||
response = palm.chat(messages=prompt)
|
response = palm.chat(messages=prompt)
|
||||||
|
|
||||||
|
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
|
||||||
return response.iter_lines()
|
|
||||||
else:
|
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=prompt,
|
input=prompt,
|
||||||
|
|
|
@ -6,6 +6,7 @@ import time
|
||||||
from typing import Callable
|
from typing import Callable
|
||||||
from litellm.utils import ModelResponse, get_secret
|
from litellm.utils import ModelResponse, get_secret
|
||||||
import sys
|
import sys
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
class SagemakerError(Exception):
|
class SagemakerError(Exception):
|
||||||
def __init__(self, status_code, message):
|
def __init__(self, status_code, message):
|
||||||
|
@ -60,9 +61,12 @@ def completion(
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
prompt += f"{message['content']}"
|
prompt += f"{message['content']}"
|
||||||
|
# pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
|
||||||
|
inference_params = deepcopy(optional_params)
|
||||||
|
inference_params.pop("stream", None)
|
||||||
data = {
|
data = {
|
||||||
"inputs": prompt,
|
"inputs": prompt,
|
||||||
"parameters": optional_params
|
"parameters": inference_params
|
||||||
}
|
}
|
||||||
|
|
||||||
## LOGGING
|
## LOGGING
|
||||||
|
@ -79,9 +83,6 @@ def completion(
|
||||||
CustomAttributes="accept_eula=true",
|
CustomAttributes="accept_eula=true",
|
||||||
)
|
)
|
||||||
response = response["Body"].read().decode("utf8")
|
response = response["Body"].read().decode("utf8")
|
||||||
if "stream" in optional_params and optional_params["stream"] == True:
|
|
||||||
return response.iter_lines()
|
|
||||||
else:
|
|
||||||
## LOGGING
|
## LOGGING
|
||||||
logging_obj.post_call(
|
logging_obj.post_call(
|
||||||
input=prompt,
|
input=prompt,
|
||||||
|
|
|
@ -977,7 +977,6 @@ def completion(
|
||||||
encoding=encoding,
|
encoding=encoding,
|
||||||
logging_obj=logging
|
logging_obj=logging
|
||||||
)
|
)
|
||||||
|
|
||||||
if "stream" in optional_params and optional_params["stream"]==True: ## [BETA]
|
if "stream" in optional_params and optional_params["stream"]==True: ## [BETA]
|
||||||
# sagemaker does not support streaming as of now so we're faking streaming:
|
# sagemaker does not support streaming as of now so we're faking streaming:
|
||||||
# https://discuss.huggingface.co/t/streaming-output-text-when-deploying-on-sagemaker/39611
|
# https://discuss.huggingface.co/t/streaming-output-text-when-deploying-on-sagemaker/39611
|
||||||
|
|
|
@ -926,7 +926,7 @@ def test_completion_with_fallbacks():
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pytest.fail(f"Error occurred: {e}")
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
test_completion_with_fallbacks()
|
# test_completion_with_fallbacks()
|
||||||
# def test_completion_with_fallbacks_multiple_keys():
|
# def test_completion_with_fallbacks_multiple_keys():
|
||||||
# print(f"backup key 1: {os.getenv('BACKUP_OPENAI_API_KEY_1')}")
|
# print(f"backup key 1: {os.getenv('BACKUP_OPENAI_API_KEY_1')}")
|
||||||
# print(f"backup key 2: {os.getenv('BACKUP_OPENAI_API_KEY_2')}")
|
# print(f"backup key 2: {os.getenv('BACKUP_OPENAI_API_KEY_2')}")
|
||||||
|
|
|
@ -709,7 +709,7 @@ def test_completion_sagemaker_stream():
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pytest.fail(f"Error occurred: {e}")
|
pytest.fail(f"Error occurred: {e}")
|
||||||
|
|
||||||
# test_completion_sagemaker_stream()
|
test_completion_sagemaker_stream()
|
||||||
|
|
||||||
# test on openai completion call
|
# test on openai completion call
|
||||||
def test_openai_text_completion_call():
|
def test_openai_text_completion_call():
|
||||||
|
|
|
@ -977,9 +977,9 @@ def get_optional_params( # use the openai defaults
|
||||||
raise ValueError("LiteLLM.Exception: Function calling is not supported by this provider")
|
raise ValueError("LiteLLM.Exception: Function calling is not supported by this provider")
|
||||||
|
|
||||||
def _check_valid_arg(supported_params):
|
def _check_valid_arg(supported_params):
|
||||||
print(f"checking params for {model}")
|
print_verbose(f"checking params for {model}")
|
||||||
print(f"params passed in {passed_params}")
|
print_verbose(f"params passed in {passed_params}")
|
||||||
print(f"non-default params passed in {non_default_params}")
|
print_verbose(f"non-default params passed in {non_default_params}")
|
||||||
unsupported_params = [k for k in non_default_params.keys() if k not in supported_params]
|
unsupported_params = [k for k in non_default_params.keys() if k not in supported_params]
|
||||||
if unsupported_params:
|
if unsupported_params:
|
||||||
raise ValueError("LiteLLM.Exception: Unsupported parameters passed: {}".format(', '.join(unsupported_params)))
|
raise ValueError("LiteLLM.Exception: Unsupported parameters passed: {}".format(', '.join(unsupported_params)))
|
||||||
|
@ -1225,7 +1225,6 @@ def get_optional_params( # use the openai defaults
|
||||||
for k in passed_params.keys():
|
for k in passed_params.keys():
|
||||||
if k not in default_params.keys():
|
if k not in default_params.keys():
|
||||||
optional_params[k] = passed_params[k]
|
optional_params[k] = passed_params[k]
|
||||||
print(f"final params going to model: {optional_params}")
|
|
||||||
return optional_params
|
return optional_params
|
||||||
|
|
||||||
def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None):
|
def get_llm_provider(model: str, custom_llm_provider: Optional[str] = None):
|
||||||
|
@ -3441,13 +3440,14 @@ def completion_with_split_tests(models={}, messages=[], use_client=False, overri
|
||||||
|
|
||||||
def completion_with_fallbacks(**kwargs):
|
def completion_with_fallbacks(**kwargs):
|
||||||
print(f"kwargs inside completion_with_fallbacks: {kwargs}")
|
print(f"kwargs inside completion_with_fallbacks: {kwargs}")
|
||||||
nested_kwargs = kwargs.pop("kwargs")
|
nested_kwargs = kwargs.pop("kwargs", {})
|
||||||
response = None
|
response = None
|
||||||
rate_limited_models = set()
|
rate_limited_models = set()
|
||||||
model_expiration_times = {}
|
model_expiration_times = {}
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
original_model = kwargs["model"]
|
original_model = kwargs["model"]
|
||||||
fallbacks = [kwargs["model"]] + nested_kwargs["fallbacks"]
|
fallbacks = [kwargs["model"]] + nested_kwargs.get("fallbacks", [])
|
||||||
|
if "fallbacks" in nested_kwargs:
|
||||||
del nested_kwargs["fallbacks"] # remove fallbacks so it's not recursive
|
del nested_kwargs["fallbacks"] # remove fallbacks so it's not recursive
|
||||||
|
|
||||||
while response == None and time.time() - start_time < 45:
|
while response == None and time.time() - start_time < 45:
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "litellm"
|
name = "litellm"
|
||||||
version = "0.1.811"
|
version = "0.1.812"
|
||||||
description = "Library to easily interface with LLM API providers"
|
description = "Library to easily interface with LLM API providers"
|
||||||
authors = ["BerriAI"]
|
authors = ["BerriAI"]
|
||||||
license = "MIT License"
|
license = "MIT License"
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue