Merge pull request #4078 from BerriAI/litellm_low_raw_request_response_otel

[FEAT]- OTEL Log raw LLM request/response on OTEL
This commit is contained in:
Ishaan Jaff 2024-06-08 19:49:28 -07:00 committed by GitHub
commit 8c5802d506
3 changed files with 257 additions and 80 deletions

View file

@ -1,6 +1,7 @@
import os import os
from dataclasses import dataclass from dataclasses import dataclass
from datetime import datetime from datetime import datetime
import litellm
from litellm.integrations.custom_logger import CustomLogger from litellm.integrations.custom_logger import CustomLogger
from litellm._logging import verbose_logger from litellm._logging import verbose_logger
@ -22,6 +23,8 @@ LITELLM_TRACER_NAME = os.getenv("OTEL_TRACER_NAME", "litellm")
LITELLM_RESOURCE = { LITELLM_RESOURCE = {
"service.name": os.getenv("OTEL_SERVICE_NAME", "litellm"), "service.name": os.getenv("OTEL_SERVICE_NAME", "litellm"),
} }
RAW_REQUEST_SPAN_NAME = "raw_gen_ai_request"
LITELLM_REQUEST_SPAN_NAME = "litellm_request"
@dataclass @dataclass
@ -194,6 +197,7 @@ class OpenTelemetry(CustomLogger):
def _handle_sucess(self, kwargs, response_obj, start_time, end_time): def _handle_sucess(self, kwargs, response_obj, start_time, end_time):
from opentelemetry.trace import Status, StatusCode from opentelemetry.trace import Status, StatusCode
from opentelemetry import trace
verbose_logger.debug( verbose_logger.debug(
"OpenTelemetry Logger: Logging kwargs: %s, OTEL config settings=%s", "OpenTelemetry Logger: Logging kwargs: %s, OTEL config settings=%s",
@ -202,6 +206,7 @@ class OpenTelemetry(CustomLogger):
) )
_parent_context, parent_otel_span = self._get_span_context(kwargs) _parent_context, parent_otel_span = self._get_span_context(kwargs)
# Span 1: Requst sent to litellm SDK
span = self.tracer.start_span( span = self.tracer.start_span(
name=self._get_span_name(kwargs), name=self._get_span_name(kwargs),
start_time=self._to_ns(start_time), start_time=self._to_ns(start_time),
@ -209,7 +214,23 @@ class OpenTelemetry(CustomLogger):
) )
span.set_status(Status(StatusCode.OK)) span.set_status(Status(StatusCode.OK))
self.set_attributes(span, kwargs, response_obj) self.set_attributes(span, kwargs, response_obj)
if litellm.turn_off_message_logging is True:
pass
else:
# Span 2: Raw Request / Response to LLM
raw_request_span = self.tracer.start_span(
name=RAW_REQUEST_SPAN_NAME,
start_time=self._to_ns(start_time),
context=trace.set_span_in_context(span),
)
raw_request_span.set_status(Status(StatusCode.OK))
self.set_raw_request_attributes(raw_request_span, kwargs, response_obj)
raw_request_span.end(end_time=self._to_ns(end_time))
span.end(end_time=self._to_ns(end_time)) span.end(end_time=self._to_ns(end_time))
if parent_otel_span is not None: if parent_otel_span is not None:
parent_otel_span.end(end_time=self._to_ns(datetime.now())) parent_otel_span.end(end_time=self._to_ns(datetime.now()))
@ -225,6 +246,31 @@ class OpenTelemetry(CustomLogger):
self.set_attributes(span, kwargs, response_obj) self.set_attributes(span, kwargs, response_obj)
span.end(end_time=self._to_ns(end_time)) span.end(end_time=self._to_ns(end_time))
def set_tools_attributes(self, span: Span, tools):
from opentelemetry.semconv.ai import SpanAttributes
import json
if not tools:
return
try:
for i, tool in enumerate(tools):
function = tool.get("function")
if not function:
continue
prefix = f"{SpanAttributes.LLM_REQUEST_FUNCTIONS}.{i}"
span.set_attribute(f"{prefix}.name", function.get("name"))
span.set_attribute(f"{prefix}.description", function.get("description"))
span.set_attribute(
f"{prefix}.parameters", json.dumps(function.get("parameters"))
)
except Exception as e:
verbose_logger.error(
"OpenTelemetry: Error setting tools attributes: %s", str(e)
)
pass
def set_attributes(self, span: Span, kwargs, response_obj): def set_attributes(self, span: Span, kwargs, response_obj):
from opentelemetry.semconv.ai import SpanAttributes from opentelemetry.semconv.ai import SpanAttributes
@ -239,7 +285,8 @@ class OpenTelemetry(CustomLogger):
############################################# #############################################
# The name of the LLM a request is being made to # The name of the LLM a request is being made to
span.set_attribute(SpanAttributes.LLM_REQUEST_MODEL, kwargs.get("model")) if kwargs.get("model"):
span.set_attribute(SpanAttributes.LLM_REQUEST_MODEL, kwargs.get("model"))
# The Generative AI Provider: Azure, OpenAI, etc. # The Generative AI Provider: Azure, OpenAI, etc.
span.set_attribute( span.set_attribute(
@ -248,64 +295,99 @@ class OpenTelemetry(CustomLogger):
) )
# The maximum number of tokens the LLM generates for a request. # The maximum number of tokens the LLM generates for a request.
span.set_attribute( if optional_params.get("max_tokens"):
SpanAttributes.LLM_REQUEST_MAX_TOKENS, optional_params.get("max_tokens") span.set_attribute(
) SpanAttributes.LLM_REQUEST_MAX_TOKENS, optional_params.get("max_tokens")
)
# The temperature setting for the LLM request. # The temperature setting for the LLM request.
span.set_attribute( if optional_params.get("temperature"):
SpanAttributes.LLM_REQUEST_TEMPERATURE, optional_params.get("temperature") span.set_attribute(
) SpanAttributes.LLM_REQUEST_TEMPERATURE,
optional_params.get("temperature"),
)
# The top_p sampling setting for the LLM request. # The top_p sampling setting for the LLM request.
span.set_attribute( if optional_params.get("top_p"):
SpanAttributes.LLM_REQUEST_TOP_P, optional_params.get("top_p")
)
span.set_attribute(
SpanAttributes.LLM_IS_STREAMING, optional_params.get("stream")
)
span.set_attribute(
SpanAttributes.LLM_REQUEST_FUNCTIONS,
optional_params.get("tools"),
)
span.set_attribute(SpanAttributes.LLM_USER, optional_params.get("user"))
for idx, prompt in enumerate(kwargs.get("messages")):
span.set_attribute( span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.role", SpanAttributes.LLM_REQUEST_TOP_P, optional_params.get("top_p")
prompt.get("role"),
)
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.content",
prompt.get("content"),
) )
span.set_attribute(
SpanAttributes.LLM_IS_STREAMING, optional_params.get("stream", False)
)
if optional_params.get("tools"):
tools = optional_params["tools"]
self.set_tools_attributes(span, tools)
if optional_params.get("user"):
span.set_attribute(SpanAttributes.LLM_USER, optional_params.get("user"))
if kwargs.get("messages"):
for idx, prompt in enumerate(kwargs.get("messages")):
if prompt.get("role"):
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.role",
prompt.get("role"),
)
if prompt.get("content"):
if not isinstance(prompt.get("content"), str):
prompt["content"] = str(prompt.get("content"))
span.set_attribute(
f"{SpanAttributes.LLM_PROMPTS}.{idx}.content",
prompt.get("content"),
)
############################################# #############################################
########## LLM Response Attributes ########## ########## LLM Response Attributes ##########
############################################# #############################################
if response_obj.get("choices"):
for idx, choice in enumerate(response_obj.get("choices")):
if choice.get("finish_reason"):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.finish_reason",
choice.get("finish_reason"),
)
if choice.get("message"):
if choice.get("message").get("role"):
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.role",
choice.get("message").get("role"),
)
if choice.get("message").get("content"):
if not isinstance(choice.get("message").get("content"), str):
choice["message"]["content"] = str(
choice.get("message").get("content")
)
span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.content",
choice.get("message").get("content"),
)
for idx, choice in enumerate(response_obj.get("choices")): message = choice.get("message")
span.set_attribute( if not isinstance(message, dict):
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.finish_reason", message = message.dict()
choice.get("finish_reason"), tool_calls = message.get("tool_calls")
) if tool_calls:
span.set_attribute( span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.role", f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.function_call.name",
choice.get("message").get("role"), tool_calls[0].get("function").get("name"),
) )
span.set_attribute( span.set_attribute(
f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.content", f"{SpanAttributes.LLM_COMPLETIONS}.{idx}.function_call.arguments",
choice.get("message").get("content"), tool_calls[0].get("function").get("arguments"),
) )
# The unique identifier for the completion. # The unique identifier for the completion.
span.set_attribute("gen_ai.response.id", response_obj.get("id")) if response_obj.get("id"):
span.set_attribute("gen_ai.response.id", response_obj.get("id"))
# The model used to generate the response. # The model used to generate the response.
span.set_attribute(SpanAttributes.LLM_RESPONSE_MODEL, response_obj.get("model")) if response_obj.get("model"):
span.set_attribute(
SpanAttributes.LLM_RESPONSE_MODEL, response_obj.get("model")
)
usage = response_obj.get("usage") usage = response_obj.get("usage")
if usage: if usage:
@ -326,11 +408,53 @@ class OpenTelemetry(CustomLogger):
usage.get("prompt_tokens"), usage.get("prompt_tokens"),
) )
def set_raw_request_attributes(self, span: Span, kwargs, response_obj):
from opentelemetry.semconv.ai import SpanAttributes
optional_params = kwargs.get("optional_params", {})
litellm_params = kwargs.get("litellm_params", {}) or {}
custom_llm_provider = litellm_params.get("custom_llm_provider", "Unknown")
_raw_response = kwargs.get("original_response")
_additional_args = kwargs.get("additional_args", {}) or {}
complete_input_dict = _additional_args.get("complete_input_dict")
#############################################
########## LLM Request Attributes ###########
#############################################
# OTEL Attributes for the RAW Request to https://docs.anthropic.com/en/api/messages
if complete_input_dict:
for param, val in complete_input_dict.items():
if not isinstance(val, str):
val = str(val)
span.set_attribute(
f"llm.{custom_llm_provider}.{param}",
val,
)
#############################################
########## LLM Response Attributes ##########
#############################################
if _raw_response:
# cast sr -> dict
import json
_raw_response = json.loads(_raw_response)
for param, val in _raw_response.items():
if not isinstance(val, str):
val = str(val)
span.set_attribute(
f"llm.{custom_llm_provider}.{param}",
val,
)
pass
def _to_ns(self, dt): def _to_ns(self, dt):
return int(dt.timestamp() * 1e9) return int(dt.timestamp() * 1e9)
def _get_span_name(self, kwargs): def _get_span_name(self, kwargs):
return f"litellm-{kwargs.get('call_type', 'completion')}" return LITELLM_REQUEST_SPAN_NAME
def _get_span_context(self, kwargs): def _get_span_context(self, kwargs):
from opentelemetry.trace.propagation.tracecontext import ( from opentelemetry.trace.propagation.tracecontext import (

View file

@ -0,0 +1,88 @@
import asyncio
import litellm
from litellm.integrations.opentelemetry import OpenTelemetry, OpenTelemetryConfig
from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanExporter
from litellm._logging import verbose_logger
import logging
import time
import pytest
verbose_logger.setLevel(logging.DEBUG)
@pytest.mark.skip(
reason="new test. WIP. works locally but not on CI. Still figuring this out"
)
@pytest.mark.asyncio
async def test_otel_callback():
exporter = InMemorySpanExporter()
litellm.set_verbose = True
litellm.callbacks = [OpenTelemetry(OpenTelemetryConfig(exporter=exporter))]
await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
temperature=0.1,
user="OTEL_USER",
)
await asyncio.sleep(4)
spans = exporter.get_finished_spans()
print("spans", spans)
assert len(spans) == 2
@pytest.mark.parametrize(
"model",
["anthropic/claude-3-opus-20240229"],
)
@pytest.mark.skip(reason="Local only test. WIP.")
def test_completion_claude_3_function_call_with_otel(model):
litellm.set_verbose = True
litellm.callbacks = [OpenTelemetry(OpenTelemetryConfig())]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
]
try:
# test without max tokens
response = litellm.completion(
model=model,
messages=messages,
tools=tools,
tool_choice={
"type": "function",
"function": {"name": "get_current_weather"},
},
drop_params=True,
)
print("response from LiteLLM", response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")

View file

@ -1,35 +0,0 @@
import asyncio
import litellm
from litellm.integrations.opentelemetry import OpenTelemetry, OpenTelemetryConfig
from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanExporter
from litellm._logging import verbose_logger
import logging
import time
import pytest
verbose_logger.setLevel(logging.DEBUG)
@pytest.mark.skip(reason="new test")
def test_otel_callback():
exporter = InMemorySpanExporter()
litellm.callbacks = [OpenTelemetry(OpenTelemetryConfig(exporter=exporter))]
litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
)
asyncio.run(
litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
)
)
time.sleep(4)
spans = exporter.get_finished_spans()
assert len(spans) == 1 + 1