fix: Support WebP image format and avoid token calculation error (#7182)

* fix get_image_dimensions

* attempt without pillow

* add clear type hints

* fix run_async_function_within_sync_function

* fix calculage_img_tokens

* fix is_prompt_caching_valid_prompt

* fix naming

* fix calculate_img_tokens

* fix unused imports

* fix calculate_img_tokens

* test test_is_prompt_caching_enabled_error_handling

* test_is_prompt_caching_enabled_return_default_image_dimensions

* fix openai_token_counter

* fix get_image_dimensions

* test_token_counter_with_image_url_with_detail_high

* test_img_url_token_counter

* fix test utils

* fix testing

* test_is_prompt_caching_enabled
This commit is contained in:
Ishaan Jaff 2024-12-12 14:32:39 -08:00 committed by GitHub
parent c6d6bda76c
commit 8c7605a164
8 changed files with 336 additions and 143 deletions

View file

@ -1,9 +1,18 @@
# What is this?
## Helper utilities for token counting
from typing import Optional
import base64
import io
import struct
from typing import Literal, Optional, Tuple, Union
import litellm
from litellm import verbose_logger
from litellm.constants import (
DEFAULT_IMAGE_HEIGHT,
DEFAULT_IMAGE_TOKEN_COUNT,
DEFAULT_IMAGE_WIDTH,
)
from litellm.llms.custom_httpx.http_handler import _get_httpx_client
def get_modified_max_tokens(
@ -81,3 +90,184 @@ def get_modified_max_tokens(
)
)
return user_max_tokens
def resize_image_high_res(
width: int,
height: int,
) -> Tuple[int, int]:
# Maximum dimensions for high res mode
max_short_side = 768
max_long_side = 2000
# Return early if no resizing is needed
if width <= 768 and height <= 768:
return width, height
# Determine the longer and shorter sides
longer_side = max(width, height)
shorter_side = min(width, height)
# Calculate the aspect ratio
aspect_ratio = longer_side / shorter_side
# Resize based on the short side being 768px
if width <= height: # Portrait or square
resized_width = max_short_side
resized_height = int(resized_width * aspect_ratio)
# if the long side exceeds the limit after resizing, adjust both sides accordingly
if resized_height > max_long_side:
resized_height = max_long_side
resized_width = int(resized_height / aspect_ratio)
else: # Landscape
resized_height = max_short_side
resized_width = int(resized_height * aspect_ratio)
# if the long side exceeds the limit after resizing, adjust both sides accordingly
if resized_width > max_long_side:
resized_width = max_long_side
resized_height = int(resized_width / aspect_ratio)
return resized_width, resized_height
# Test the function with the given example
def calculate_tiles_needed(
resized_width, resized_height, tile_width=512, tile_height=512
):
tiles_across = (resized_width + tile_width - 1) // tile_width
tiles_down = (resized_height + tile_height - 1) // tile_height
total_tiles = tiles_across * tiles_down
return total_tiles
def get_image_type(image_data: bytes) -> Union[str, None]:
"""take an image (really only the first ~100 bytes max are needed)
and return 'png' 'gif' 'jpeg' 'webp' 'heic' or None. method added to
allow deprecation of imghdr in 3.13"""
if image_data[0:8] == b"\x89\x50\x4e\x47\x0d\x0a\x1a\x0a":
return "png"
if image_data[0:4] == b"GIF8" and image_data[5:6] == b"a":
return "gif"
if image_data[0:3] == b"\xff\xd8\xff":
return "jpeg"
if image_data[4:8] == b"ftyp":
return "heic"
if image_data[0:4] == b"RIFF" and image_data[8:12] == b"WEBP":
return "webp"
return None
def get_image_dimensions(
data: str,
) -> Tuple[int, int]:
"""
Async Function to get the dimensions of an image from a URL or base64 encoded string.
Args:
data (str): The URL or base64 encoded string of the image.
Returns:
Tuple[int, int]: The width and height of the image.
"""
img_data = None
try:
# Try to open as URL
client = _get_httpx_client()
response = client.get(data)
img_data = response.read()
except Exception:
# If not URL, assume it's base64
_header, encoded = data.split(",", 1)
img_data = base64.b64decode(encoded)
img_type = get_image_type(img_data)
if img_type == "png":
w, h = struct.unpack(">LL", img_data[16:24])
return w, h
elif img_type == "gif":
w, h = struct.unpack("<HH", img_data[6:10])
return w, h
elif img_type == "jpeg":
with io.BytesIO(img_data) as fhandle:
fhandle.seek(0)
size = 2
ftype = 0
while not 0xC0 <= ftype <= 0xCF or ftype in (0xC4, 0xC8, 0xCC):
fhandle.seek(size, 1)
byte = fhandle.read(1)
while ord(byte) == 0xFF:
byte = fhandle.read(1)
ftype = ord(byte)
size = struct.unpack(">H", fhandle.read(2))[0] - 2
fhandle.seek(1, 1)
h, w = struct.unpack(">HH", fhandle.read(4))
return w, h
elif img_type == "webp":
# For WebP, the dimensions are stored at different offsets depending on the format
# Check for VP8X (extended format)
if img_data[12:16] == b"VP8X":
w = struct.unpack("<I", img_data[24:27] + b"\x00")[0] + 1
h = struct.unpack("<I", img_data[27:30] + b"\x00")[0] + 1
return w, h
# Check for VP8 (lossy format)
elif img_data[12:16] == b"VP8 ":
w = struct.unpack("<H", img_data[26:28])[0] & 0x3FFF
h = struct.unpack("<H", img_data[28:30])[0] & 0x3FFF
return w, h
# Check for VP8L (lossless format)
elif img_data[12:16] == b"VP8L":
bits = struct.unpack("<I", img_data[21:25])[0]
w = (bits & 0x3FFF) + 1
h = ((bits >> 14) & 0x3FFF) + 1
return w, h
# return sensible default image dimensions if unable to get dimensions
return DEFAULT_IMAGE_WIDTH, DEFAULT_IMAGE_HEIGHT
def calculate_img_tokens(
data,
mode: Literal["low", "high", "auto"] = "auto",
base_tokens: int = 85, # openai default - https://openai.com/pricing
use_default_image_token_count: bool = False,
):
"""
Calculate the number of tokens for an image.
Args:
data (str): The URL or base64 encoded string of the image.
mode (Literal["low", "high", "auto"]): The mode to use for calculating the number of tokens.
base_tokens (int): The base number of tokens for an image.
use_default_image_token_count (bool): When True, will NOT make a GET request to the image URL and instead return the default image dimensions.
Returns:
int: The number of tokens for the image.
"""
if use_default_image_token_count:
verbose_logger.debug(
"Using default image token count: {}".format(DEFAULT_IMAGE_TOKEN_COUNT)
)
return DEFAULT_IMAGE_TOKEN_COUNT
if mode == "low" or mode == "auto":
return base_tokens
elif mode == "high":
# Run the async function using the helper
width, height = get_image_dimensions(
data=data,
)
resized_width, resized_height = resize_image_high_res(
width=width, height=height
)
tiles_needed_high_res = calculate_tiles_needed(
resized_width=resized_width, resized_height=resized_height
)
tile_tokens = (base_tokens * 2) * tiles_needed_high_res
total_tokens = base_tokens + tile_tokens
return total_tokens