mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
(Refactor) - migrate bedrock invoke to BaseLLMHTTPHandler
class (#8290)
* initial transform for invoke * invoke transform_response * working - able to make request * working get_complete_url * working - invoke now runs on llm_http_handler * fix unused imports * track litellm overhead ms * working stream request * sign_request transform * sign_request update * use has_async_custom_stream_wrapper property * use get_async_custom_stream_wrapper in base llm http handler * fix make_call in invoke handler * fix invoke with streaming get_async_custom_stream_wrapper * working bedrock async streaming with invoke * fix make call handler for bedrock * test_all_model_configs * fix test_bedrock_custom_prompt_template * sync streaming for bedrock invoke * fix _add_stream_param_to_request_body * test_async_text_completion_bedrock * fix transform_request * fix get_supported_openai_params * fix test supports tool choice * fix test_supports_tool_choice * add unit test coverage for bedrock invoke transform * fix location of transformation files * update import loc * fix bedrock invoke unit tests * fix import for max completion tokens
This commit is contained in:
parent
3f206cc2b4
commit
8e0736d5ad
22 changed files with 1870 additions and 737 deletions
|
@ -3,22 +3,13 @@ Common utilities used across bedrock chat/embedding/image generation
|
|||
"""
|
||||
|
||||
import os
|
||||
import re
|
||||
import types
|
||||
from enum import Enum
|
||||
from typing import Any, List, Optional, Union
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import httpx
|
||||
|
||||
import litellm
|
||||
from litellm.llms.base_llm.chat.transformation import (
|
||||
BaseConfig,
|
||||
BaseLLMException,
|
||||
LiteLLMLoggingObj,
|
||||
)
|
||||
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
||||
from litellm.secret_managers.main import get_secret
|
||||
from litellm.types.llms.openai import AllMessageValues
|
||||
from litellm.types.utils import ModelResponse
|
||||
|
||||
|
||||
class BedrockError(BaseLLMException):
|
||||
|
@ -84,642 +75,6 @@ class AmazonBedrockGlobalConfig:
|
|||
]
|
||||
|
||||
|
||||
class AmazonInvokeMixin:
|
||||
"""
|
||||
Base class for bedrock models going through invoke_handler.py
|
||||
"""
|
||||
|
||||
def get_error_class(
|
||||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||||
) -> BaseLLMException:
|
||||
return BedrockError(
|
||||
message=error_message,
|
||||
status_code=status_code,
|
||||
headers=headers,
|
||||
)
|
||||
|
||||
def transform_request(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
headers: dict,
|
||||
) -> dict:
|
||||
raise NotImplementedError(
|
||||
"transform_request not implemented for config. Done in invoke_handler.py"
|
||||
)
|
||||
|
||||
def transform_response(
|
||||
self,
|
||||
model: str,
|
||||
raw_response: httpx.Response,
|
||||
model_response: ModelResponse,
|
||||
logging_obj: LiteLLMLoggingObj,
|
||||
request_data: dict,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
litellm_params: dict,
|
||||
encoding: Any,
|
||||
api_key: Optional[str] = None,
|
||||
json_mode: Optional[bool] = None,
|
||||
) -> ModelResponse:
|
||||
raise NotImplementedError(
|
||||
"transform_response not implemented for config. Done in invoke_handler.py"
|
||||
)
|
||||
|
||||
def validate_environment(
|
||||
self,
|
||||
headers: dict,
|
||||
model: str,
|
||||
messages: List[AllMessageValues],
|
||||
optional_params: dict,
|
||||
api_key: Optional[str] = None,
|
||||
api_base: Optional[str] = None,
|
||||
) -> dict:
|
||||
raise NotImplementedError(
|
||||
"validate_environment not implemented for config. Done in invoke_handler.py"
|
||||
)
|
||||
|
||||
|
||||
class AmazonTitanConfig(AmazonInvokeMixin, BaseConfig):
|
||||
"""
|
||||
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-text-express-v1
|
||||
|
||||
Supported Params for the Amazon Titan models:
|
||||
|
||||
- `maxTokenCount` (integer) max tokens,
|
||||
- `stopSequences` (string[]) list of stop sequence strings
|
||||
- `temperature` (float) temperature for model,
|
||||
- `topP` (int) top p for model
|
||||
"""
|
||||
|
||||
maxTokenCount: Optional[int] = None
|
||||
stopSequences: Optional[list] = None
|
||||
temperature: Optional[float] = None
|
||||
topP: Optional[int] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
maxTokenCount: Optional[int] = None,
|
||||
stopSequences: Optional[list] = None,
|
||||
temperature: Optional[float] = None,
|
||||
topP: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not k.startswith("_abc")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def _map_and_modify_arg(
|
||||
self,
|
||||
supported_params: dict,
|
||||
provider: str,
|
||||
model: str,
|
||||
stop: Union[List[str], str],
|
||||
):
|
||||
"""
|
||||
filter params to fit the required provider format, drop those that don't fit if user sets `litellm.drop_params = True`.
|
||||
"""
|
||||
filtered_stop = None
|
||||
if "stop" in supported_params and litellm.drop_params:
|
||||
if provider == "bedrock" and "amazon" in model:
|
||||
filtered_stop = []
|
||||
if isinstance(stop, list):
|
||||
for s in stop:
|
||||
if re.match(r"^(\|+|User:)$", s):
|
||||
filtered_stop.append(s)
|
||||
if filtered_stop is not None:
|
||||
supported_params["stop"] = filtered_stop
|
||||
|
||||
return supported_params
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return [
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"stop",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"stream",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for k, v in non_default_params.items():
|
||||
if k == "max_tokens" or k == "max_completion_tokens":
|
||||
optional_params["maxTokenCount"] = v
|
||||
if k == "temperature":
|
||||
optional_params["temperature"] = v
|
||||
if k == "stop":
|
||||
filtered_stop = self._map_and_modify_arg(
|
||||
{"stop": v}, provider="bedrock", model=model, stop=v
|
||||
)
|
||||
optional_params["stopSequences"] = filtered_stop["stop"]
|
||||
if k == "top_p":
|
||||
optional_params["topP"] = v
|
||||
if k == "stream":
|
||||
optional_params["stream"] = v
|
||||
return optional_params
|
||||
|
||||
|
||||
class AmazonAnthropicClaude3Config:
|
||||
"""
|
||||
Reference:
|
||||
https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=claude
|
||||
https://docs.anthropic.com/claude/docs/models-overview#model-comparison
|
||||
|
||||
Supported Params for the Amazon / Anthropic Claude 3 models:
|
||||
|
||||
- `max_tokens` Required (integer) max tokens. Default is 4096
|
||||
- `anthropic_version` Required (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
|
||||
- `system` Optional (string) the system prompt, conversion from openai format to this is handled in factory.py
|
||||
- `temperature` Optional (float) The amount of randomness injected into the response
|
||||
- `top_p` Optional (float) Use nucleus sampling.
|
||||
- `top_k` Optional (int) Only sample from the top K options for each subsequent token
|
||||
- `stop_sequences` Optional (List[str]) Custom text sequences that cause the model to stop generating
|
||||
"""
|
||||
|
||||
max_tokens: Optional[int] = 4096 # Opus, Sonnet, and Haiku default
|
||||
anthropic_version: Optional[str] = "bedrock-2023-05-31"
|
||||
system: Optional[str] = None
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
top_k: Optional[int] = None
|
||||
stop_sequences: Optional[List[str]] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
anthropic_version: Optional[str] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self):
|
||||
return [
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"tools",
|
||||
"tool_choice",
|
||||
"stream",
|
||||
"stop",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"extra_headers",
|
||||
]
|
||||
|
||||
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens" or param == "max_completion_tokens":
|
||||
optional_params["max_tokens"] = value
|
||||
if param == "tools":
|
||||
optional_params["tools"] = value
|
||||
if param == "stream":
|
||||
optional_params["stream"] = value
|
||||
if param == "stop":
|
||||
optional_params["stop_sequences"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
return optional_params
|
||||
|
||||
|
||||
class AmazonAnthropicConfig:
|
||||
"""
|
||||
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=claude
|
||||
|
||||
Supported Params for the Amazon / Anthropic models:
|
||||
|
||||
- `max_tokens_to_sample` (integer) max tokens,
|
||||
- `temperature` (float) model temperature,
|
||||
- `top_k` (integer) top k,
|
||||
- `top_p` (integer) top p,
|
||||
- `stop_sequences` (string[]) list of stop sequences - e.g. ["\\n\\nHuman:"],
|
||||
- `anthropic_version` (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
|
||||
"""
|
||||
|
||||
max_tokens_to_sample: Optional[int] = litellm.max_tokens
|
||||
stop_sequences: Optional[list] = None
|
||||
temperature: Optional[float] = None
|
||||
top_k: Optional[int] = None
|
||||
top_p: Optional[int] = None
|
||||
anthropic_version: Optional[str] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens_to_sample: Optional[int] = None,
|
||||
stop_sequences: Optional[list] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_k: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
anthropic_version: Optional[str] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(
|
||||
self,
|
||||
):
|
||||
return [
|
||||
"max_tokens",
|
||||
"max_completion_tokens",
|
||||
"temperature",
|
||||
"stop",
|
||||
"top_p",
|
||||
"stream",
|
||||
]
|
||||
|
||||
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
||||
for param, value in non_default_params.items():
|
||||
if param == "max_tokens" or param == "max_completion_tokens":
|
||||
optional_params["max_tokens_to_sample"] = value
|
||||
if param == "temperature":
|
||||
optional_params["temperature"] = value
|
||||
if param == "top_p":
|
||||
optional_params["top_p"] = value
|
||||
if param == "stop":
|
||||
optional_params["stop_sequences"] = value
|
||||
if param == "stream" and value is True:
|
||||
optional_params["stream"] = value
|
||||
return optional_params
|
||||
|
||||
|
||||
class AmazonCohereConfig(AmazonInvokeMixin, BaseConfig):
|
||||
"""
|
||||
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=command
|
||||
|
||||
Supported Params for the Amazon / Cohere models:
|
||||
|
||||
- `max_tokens` (integer) max tokens,
|
||||
- `temperature` (float) model temperature,
|
||||
- `return_likelihood` (string) n/a
|
||||
"""
|
||||
|
||||
max_tokens: Optional[int] = None
|
||||
temperature: Optional[float] = None
|
||||
return_likelihood: Optional[str] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
temperature: Optional[float] = None,
|
||||
return_likelihood: Optional[str] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not k.startswith("_abc")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return [
|
||||
"max_tokens",
|
||||
"temperature",
|
||||
"stream",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for k, v in non_default_params.items():
|
||||
if k == "stream":
|
||||
optional_params["stream"] = v
|
||||
if k == "temperature":
|
||||
optional_params["temperature"] = v
|
||||
if k == "max_tokens":
|
||||
optional_params["max_tokens"] = v
|
||||
return optional_params
|
||||
|
||||
|
||||
class AmazonAI21Config(AmazonInvokeMixin, BaseConfig):
|
||||
"""
|
||||
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra
|
||||
|
||||
Supported Params for the Amazon / AI21 models:
|
||||
|
||||
- `maxTokens` (int32): The maximum number of tokens to generate per result. Optional, default is 16. If no `stopSequences` are given, generation stops after producing `maxTokens`.
|
||||
|
||||
- `temperature` (float): Modifies the distribution from which tokens are sampled. Optional, default is 0.7. A value of 0 essentially disables sampling and results in greedy decoding.
|
||||
|
||||
- `topP` (float): Used for sampling tokens from the corresponding top percentile of probability mass. Optional, default is 1. For instance, a value of 0.9 considers only tokens comprising the top 90% probability mass.
|
||||
|
||||
- `stopSequences` (array of strings): Stops decoding if any of the input strings is generated. Optional.
|
||||
|
||||
- `frequencyPenalty` (object): Placeholder for frequency penalty object.
|
||||
|
||||
- `presencePenalty` (object): Placeholder for presence penalty object.
|
||||
|
||||
- `countPenalty` (object): Placeholder for count penalty object.
|
||||
"""
|
||||
|
||||
maxTokens: Optional[int] = None
|
||||
temperature: Optional[float] = None
|
||||
topP: Optional[float] = None
|
||||
stopSequences: Optional[list] = None
|
||||
frequencePenalty: Optional[dict] = None
|
||||
presencePenalty: Optional[dict] = None
|
||||
countPenalty: Optional[dict] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
maxTokens: Optional[int] = None,
|
||||
temperature: Optional[float] = None,
|
||||
topP: Optional[float] = None,
|
||||
stopSequences: Optional[list] = None,
|
||||
frequencePenalty: Optional[dict] = None,
|
||||
presencePenalty: Optional[dict] = None,
|
||||
countPenalty: Optional[dict] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not k.startswith("_abc")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List:
|
||||
return [
|
||||
"max_tokens",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"stream",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for k, v in non_default_params.items():
|
||||
if k == "max_tokens":
|
||||
optional_params["maxTokens"] = v
|
||||
if k == "temperature":
|
||||
optional_params["temperature"] = v
|
||||
if k == "top_p":
|
||||
optional_params["topP"] = v
|
||||
if k == "stream":
|
||||
optional_params["stream"] = v
|
||||
return optional_params
|
||||
|
||||
|
||||
class AnthropicConstants(Enum):
|
||||
HUMAN_PROMPT = "\n\nHuman: "
|
||||
AI_PROMPT = "\n\nAssistant: "
|
||||
|
||||
|
||||
class AmazonLlamaConfig(AmazonInvokeMixin, BaseConfig):
|
||||
"""
|
||||
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=meta.llama2-13b-chat-v1
|
||||
|
||||
Supported Params for the Amazon / Meta Llama models:
|
||||
|
||||
- `max_gen_len` (integer) max tokens,
|
||||
- `temperature` (float) temperature for model,
|
||||
- `top_p` (float) top p for model
|
||||
"""
|
||||
|
||||
max_gen_len: Optional[int] = None
|
||||
temperature: Optional[float] = None
|
||||
topP: Optional[float] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
maxTokenCount: Optional[int] = None,
|
||||
temperature: Optional[float] = None,
|
||||
topP: Optional[int] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not k.startswith("_abc")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List:
|
||||
return [
|
||||
"max_tokens",
|
||||
"temperature",
|
||||
"top_p",
|
||||
"stream",
|
||||
]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for k, v in non_default_params.items():
|
||||
if k == "max_tokens":
|
||||
optional_params["max_gen_len"] = v
|
||||
if k == "temperature":
|
||||
optional_params["temperature"] = v
|
||||
if k == "top_p":
|
||||
optional_params["top_p"] = v
|
||||
if k == "stream":
|
||||
optional_params["stream"] = v
|
||||
return optional_params
|
||||
|
||||
|
||||
class AmazonMistralConfig(AmazonInvokeMixin, BaseConfig):
|
||||
"""
|
||||
Reference: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-mistral.html
|
||||
Supported Params for the Amazon / Mistral models:
|
||||
|
||||
- `max_tokens` (integer) max tokens,
|
||||
- `temperature` (float) temperature for model,
|
||||
- `top_p` (float) top p for model
|
||||
- `stop` [string] A list of stop sequences that if generated by the model, stops the model from generating further output.
|
||||
- `top_k` (float) top k for model
|
||||
"""
|
||||
|
||||
max_tokens: Optional[int] = None
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
top_k: Optional[float] = None
|
||||
stop: Optional[List[str]] = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
max_tokens: Optional[int] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[int] = None,
|
||||
top_k: Optional[float] = None,
|
||||
stop: Optional[List[str]] = None,
|
||||
) -> None:
|
||||
locals_ = locals()
|
||||
for key, value in locals_.items():
|
||||
if key != "self" and value is not None:
|
||||
setattr(self.__class__, key, value)
|
||||
|
||||
@classmethod
|
||||
def get_config(cls):
|
||||
return {
|
||||
k: v
|
||||
for k, v in cls.__dict__.items()
|
||||
if not k.startswith("__")
|
||||
and not k.startswith("_abc")
|
||||
and not isinstance(
|
||||
v,
|
||||
(
|
||||
types.FunctionType,
|
||||
types.BuiltinFunctionType,
|
||||
classmethod,
|
||||
staticmethod,
|
||||
),
|
||||
)
|
||||
and v is not None
|
||||
}
|
||||
|
||||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||||
return ["max_tokens", "temperature", "top_p", "stop", "stream"]
|
||||
|
||||
def map_openai_params(
|
||||
self,
|
||||
non_default_params: dict,
|
||||
optional_params: dict,
|
||||
model: str,
|
||||
drop_params: bool,
|
||||
) -> dict:
|
||||
for k, v in non_default_params.items():
|
||||
if k == "max_tokens":
|
||||
optional_params["max_tokens"] = v
|
||||
if k == "temperature":
|
||||
optional_params["temperature"] = v
|
||||
if k == "top_p":
|
||||
optional_params["top_p"] = v
|
||||
if k == "stop":
|
||||
optional_params["stop"] = v
|
||||
if k == "stream":
|
||||
optional_params["stream"] = v
|
||||
return optional_params
|
||||
|
||||
|
||||
def add_custom_header(headers):
|
||||
"""Closure to capture the headers and add them."""
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue