mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
moving proxy server to the top of repo
This commit is contained in:
parent
8543d89418
commit
8ef47524bf
10 changed files with 0 additions and 0 deletions
107
proxy-server/utils.py
Normal file
107
proxy-server/utils.py
Normal file
|
@ -0,0 +1,107 @@
|
|||
|
||||
from litellm import completion
|
||||
import os, dotenv
|
||||
import json
|
||||
dotenv.load_dotenv()
|
||||
############### Advanced ##########################
|
||||
|
||||
########### streaming ############################
|
||||
def generate_responses(response):
|
||||
for chunk in response:
|
||||
yield json.dumps({"response": chunk}) + "\n"
|
||||
|
||||
################ ERROR HANDLING #####################
|
||||
# implement model fallbacks, cooldowns, and retries
|
||||
# if a model fails assume it was rate limited and let it cooldown for 60s
|
||||
def handle_error(data):
|
||||
import time
|
||||
# retry completion() request with fallback models
|
||||
response = None
|
||||
start_time = time.time()
|
||||
rate_limited_models = set()
|
||||
model_expiration_times = {}
|
||||
fallback_strategy=['gpt-3.5-turbo', 'command-nightly', 'claude-2']
|
||||
while response == None and time.time() - start_time < 45: # retry for 45s
|
||||
for model in fallback_strategy:
|
||||
try:
|
||||
if model in rate_limited_models: # check if model is currently cooling down
|
||||
if model_expiration_times.get(model) and time.time() >= model_expiration_times[model]:
|
||||
rate_limited_models.remove(model) # check if it's been 60s of cool down and remove model
|
||||
else:
|
||||
continue # skip model
|
||||
print(f"calling model {model}")
|
||||
response = completion(**data)
|
||||
if response != None:
|
||||
return response
|
||||
except Exception as e:
|
||||
rate_limited_models.add(model)
|
||||
model_expiration_times[model] = time.time() + 60 # cool down this selected model
|
||||
pass
|
||||
return response
|
||||
|
||||
|
||||
########### Pricing is tracked in Supabase ############
|
||||
|
||||
|
||||
|
||||
import uuid
|
||||
cache_collection = None
|
||||
# Add a response to the cache
|
||||
def add_cache(messages, model_response):
|
||||
global cache_collection
|
||||
if cache_collection is None:
|
||||
make_collection()
|
||||
|
||||
user_question = message_to_user_question(messages)
|
||||
|
||||
# Add the user question and model response to the cache
|
||||
cache_collection.add(
|
||||
documents=[user_question],
|
||||
metadatas=[{"model_response": str(model_response)}],
|
||||
ids=[str(uuid.uuid4())]
|
||||
)
|
||||
return
|
||||
|
||||
# Retrieve a response from the cache if similarity is above the threshold
|
||||
def get_cache(messages, similarity_threshold):
|
||||
try:
|
||||
global cache_collection
|
||||
if cache_collection is None:
|
||||
make_collection()
|
||||
|
||||
user_question = message_to_user_question(messages)
|
||||
|
||||
# Query the cache for the user question
|
||||
results = cache_collection.query(
|
||||
query_texts=[user_question],
|
||||
n_results=1
|
||||
)
|
||||
|
||||
if len(results['distances'][0]) == 0:
|
||||
return None # Cache is empty
|
||||
|
||||
distance = results['distances'][0][0]
|
||||
sim = (1 - distance)
|
||||
|
||||
if sim >= similarity_threshold:
|
||||
return results['metadatas'][0][0]["model_response"] # Return cached response
|
||||
else:
|
||||
return None # No cache hit
|
||||
except Exception as e:
|
||||
print("Error in get cache", e)
|
||||
raise e
|
||||
|
||||
# Initialize the cache collection
|
||||
def make_collection():
|
||||
import chromadb
|
||||
global cache_collection
|
||||
client = chromadb.Client()
|
||||
cache_collection = client.create_collection("llm_responses")
|
||||
|
||||
# HELPER: Extract user's question from messages
|
||||
def message_to_user_question(messages):
|
||||
user_question = ""
|
||||
for message in messages:
|
||||
if message['role'] == 'user':
|
||||
user_question += message["content"]
|
||||
return user_question
|
Loading…
Add table
Add a link
Reference in a new issue