mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
LiteLLM Minor Fixes & Improvements (12/05/2024) (#7051)
* fix(cost_calculator.py): move to using `.get_model_info()` for cost per token calculations ensures cost tracking is reliable - handles edge cases of parsing model cost map * build(model_prices_and_context_window.json): add 'supports_response_schema' for select tgai models Fixes https://github.com/BerriAI/litellm/pull/7037#discussion_r1872157329 * build(model_prices_and_context_window.json): remove 'pdf input' and 'vision' support from nova micro in model map Bedrock docs indicate no support for micro - https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference-supported-models-features.html * fix(converse_transformation.py): support amazon nova tool use * fix(opentelemetry): Add missing LLM request type attribute to spans (#7041) * feat(opentelemetry): add LLM request type attribute to spans * lint * fix: curl usage (#7038) curl -d, --data <data> is lowercase d curl -D, --dump-header <filename> is uppercase D references: https://curl.se/docs/manpage.html#-d https://curl.se/docs/manpage.html#-D * fix(spend_tracking.py): handle empty 'id' in model response - when creating spend log Fixes https://github.com/BerriAI/litellm/issues/7023 * fix(streaming_chunk_builder.py): handle initial id being empty string Fixes https://github.com/BerriAI/litellm/issues/7023 * fix(anthropic_passthrough_logging_handler.py): add end user cost tracking for anthropic pass through endpoint * docs(pass_through/): refactor docs location + add table on supported features for pass through endpoints * feat(anthropic_passthrough_logging_handler.py): support end user cost tracking via anthropic sdk * docs(anthropic_completion.md): add docs on passing end user param for cost tracking on anthropic sdk * fix(litellm_logging.py): use standard logging payload if present in kwargs prevent datadog logging error for pass through endpoints * docs(bedrock.md): add rerank api usage example to docs * bugfix/change dummy tool name format (#7053) * fix viewing keys (#7042) * ui new build * build(model_prices_and_context_window.json): add bedrock region models to model cost map (#7044) * bye (#6982) * (fix) litellm router.aspeech (#6962) * doc Migrating Databases * fix aspeech on router * test_audio_speech_router * test_audio_speech_router * docs show supported providers on batches api doc * change dummy tool name format --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com> Co-authored-by: yujonglee <yujonglee.dev@gmail.com> * fix: fix linting errors * test: update test * fix(litellm_logging.py): fix pass through check * fix(test_otel_logging.py): fix test * fix(cost_calculator.py): update handling for cost per second * fix(cost_calculator.py): fix cost check * test: fix test * (fix) adding public routes when using custom header (#7045) * get_api_key_from_custom_header * add test_get_api_key_from_custom_header * fix testing use 1 file for test user api key auth * fix test user api key auth * test_custom_api_key_header_name * build: update ui build --------- Co-authored-by: Doron Kopit <83537683+doronkopit5@users.noreply.github.com> Co-authored-by: lloydchang <lloydchang@gmail.com> Co-authored-by: hgulersen <haymigulersen@gmail.com> Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
This commit is contained in:
parent
56956fd6e7
commit
92a7e8e3e9
108 changed files with 561 additions and 356 deletions
|
@ -283,142 +283,48 @@ def cost_per_token( # noqa: PLR0915
|
|||
prompt_tokens=prompt_tokens,
|
||||
completion_tokens=completion_tokens,
|
||||
)
|
||||
elif model in model_cost_ref:
|
||||
print_verbose(f"Success: model={model} in model_cost_map")
|
||||
print_verbose(
|
||||
f"prompt_tokens={prompt_tokens}; completion_tokens={completion_tokens}"
|
||||
else:
|
||||
model_info = litellm.get_model_info(
|
||||
model=model, custom_llm_provider=custom_llm_provider
|
||||
)
|
||||
if (
|
||||
model_cost_ref[model].get("input_cost_per_token", None) is not None
|
||||
and model_cost_ref[model].get("output_cost_per_token", None) is not None
|
||||
):
|
||||
|
||||
if model_info["input_cost_per_token"] > 0:
|
||||
## COST PER TOKEN ##
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
|
||||
model_info["input_cost_per_token"] * prompt_tokens
|
||||
)
|
||||
elif (
|
||||
model_cost_ref[model].get("output_cost_per_second", None) is not None
|
||||
model_info.get("input_cost_per_second", None) is not None
|
||||
and response_time_ms is not None
|
||||
):
|
||||
print_verbose(
|
||||
f"For model={model} - output_cost_per_second: {model_cost_ref[model].get('output_cost_per_second')}; response time: {response_time_ms}"
|
||||
)
|
||||
## COST PER SECOND ##
|
||||
prompt_tokens_cost_usd_dollar = 0
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref[model]["output_cost_per_second"]
|
||||
* response_time_ms
|
||||
/ 1000
|
||||
)
|
||||
elif (
|
||||
model_cost_ref[model].get("input_cost_per_second", None) is not None
|
||||
and response_time_ms is not None
|
||||
):
|
||||
print_verbose(
|
||||
f"For model={model} - input_cost_per_second: {model_cost_ref[model].get('input_cost_per_second')}; response time: {response_time_ms}"
|
||||
f"For model={model} - input_cost_per_second: {model_info.get('input_cost_per_second')}; response time: {response_time_ms}"
|
||||
)
|
||||
## COST PER SECOND ##
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost_ref[model]["input_cost_per_second"] * response_time_ms / 1000
|
||||
model_info["input_cost_per_second"] * response_time_ms / 1000 # type: ignore
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = 0.0
|
||||
|
||||
if model_info["output_cost_per_token"] > 0:
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_info["output_cost_per_token"] * completion_tokens
|
||||
)
|
||||
elif (
|
||||
model_info.get("output_cost_per_second", None) is not None
|
||||
and response_time_ms is not None
|
||||
):
|
||||
print_verbose(
|
||||
f"For model={model} - output_cost_per_second: {model_info.get('output_cost_per_second')}; response time: {response_time_ms}"
|
||||
)
|
||||
## COST PER SECOND ##
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_info["output_cost_per_second"] * response_time_ms / 1000 # type: ignore
|
||||
)
|
||||
|
||||
print_verbose(
|
||||
f"Returned custom cost for model={model} - prompt_tokens_cost_usd_dollar: {prompt_tokens_cost_usd_dollar}, completion_tokens_cost_usd_dollar: {completion_tokens_cost_usd_dollar}"
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
elif "ft:gpt-3.5-turbo" in model:
|
||||
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
|
||||
# fuzzy match ft:gpt-3.5-turbo:abcd-id-cool-litellm
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost_ref["ft:gpt-3.5-turbo"]["input_cost_per_token"] * prompt_tokens
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref["ft:gpt-3.5-turbo"]["output_cost_per_token"]
|
||||
* completion_tokens
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
elif "ft:gpt-4-0613" in model:
|
||||
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
|
||||
# fuzzy match ft:gpt-4-0613:abcd-id-cool-litellm
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost_ref["ft:gpt-4-0613"]["input_cost_per_token"] * prompt_tokens
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref["ft:gpt-4-0613"]["output_cost_per_token"] * completion_tokens
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
elif "ft:gpt-4o-2024-05-13" in model:
|
||||
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
|
||||
# fuzzy match ft:gpt-4o-2024-05-13:abcd-id-cool-litellm
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost_ref["ft:gpt-4o-2024-05-13"]["input_cost_per_token"]
|
||||
* prompt_tokens
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref["ft:gpt-4o-2024-05-13"]["output_cost_per_token"]
|
||||
* completion_tokens
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
|
||||
elif "ft:davinci-002" in model:
|
||||
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
|
||||
# fuzzy match ft:davinci-002:abcd-id-cool-litellm
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost_ref["ft:davinci-002"]["input_cost_per_token"] * prompt_tokens
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref["ft:davinci-002"]["output_cost_per_token"]
|
||||
* completion_tokens
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
elif "ft:babbage-002" in model:
|
||||
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
|
||||
# fuzzy match ft:babbage-002:abcd-id-cool-litellm
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost_ref["ft:babbage-002"]["input_cost_per_token"] * prompt_tokens
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref["ft:babbage-002"]["output_cost_per_token"]
|
||||
* completion_tokens
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
elif model in litellm.azure_llms:
|
||||
verbose_logger.debug(f"Cost Tracking: {model} is an Azure LLM")
|
||||
model = litellm.azure_llms[model]
|
||||
verbose_logger.debug(
|
||||
f"applying cost={model_cost_ref[model]['input_cost_per_token']} for prompt_tokens={prompt_tokens}"
|
||||
)
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
|
||||
)
|
||||
verbose_logger.debug(
|
||||
f"applying cost={model_cost_ref[model]['output_cost_per_token']} for completion_tokens={completion_tokens}"
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
elif model in litellm.azure_embedding_models:
|
||||
verbose_logger.debug(f"Cost Tracking: {model} is an Azure Embedding Model")
|
||||
model = litellm.azure_embedding_models[model]
|
||||
prompt_tokens_cost_usd_dollar = (
|
||||
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
|
||||
)
|
||||
completion_tokens_cost_usd_dollar = (
|
||||
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
|
||||
)
|
||||
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
||||
else:
|
||||
# if model is not in model_prices_and_context_window.json. Raise an exception-let users know
|
||||
error_str = f"Model not in model_prices_and_context_window.json. You passed model={model}, custom_llm_provider={custom_llm_provider}. Register pricing for model - https://docs.litellm.ai/docs/proxy/custom_pricing\n"
|
||||
raise litellm.exceptions.NotFoundError( # type: ignore
|
||||
message=error_str,
|
||||
model=model,
|
||||
llm_provider="",
|
||||
)
|
||||
|
||||
|
||||
def get_replicate_completion_pricing(completion_response: dict, total_time=0.0):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue