LiteLLM Minor Fixes & Improvements (12/05/2024) (#7051)

* fix(cost_calculator.py): move to using `.get_model_info()` for cost per token calculations

ensures cost tracking is reliable - handles edge cases of parsing model cost map

* build(model_prices_and_context_window.json): add 'supports_response_schema' for select tgai models

Fixes https://github.com/BerriAI/litellm/pull/7037#discussion_r1872157329

* build(model_prices_and_context_window.json): remove 'pdf input' and 'vision' support from nova micro in model map

Bedrock docs indicate no support for micro - https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference-supported-models-features.html

* fix(converse_transformation.py): support amazon nova tool use

* fix(opentelemetry): Add missing LLM request type attribute to spans (#7041)

* feat(opentelemetry): add LLM request type attribute to spans

* lint

* fix: curl usage (#7038)

curl -d, --data <data> is lowercase d
curl -D, --dump-header <filename> is uppercase D

references:
https://curl.se/docs/manpage.html#-d
https://curl.se/docs/manpage.html#-D

* fix(spend_tracking.py): handle empty 'id' in model response - when creating spend log

Fixes https://github.com/BerriAI/litellm/issues/7023

* fix(streaming_chunk_builder.py): handle initial id being empty string

Fixes https://github.com/BerriAI/litellm/issues/7023

* fix(anthropic_passthrough_logging_handler.py): add end user cost tracking for anthropic pass through endpoint

* docs(pass_through/): refactor docs location + add table on supported features for pass through endpoints

* feat(anthropic_passthrough_logging_handler.py): support end user cost tracking via anthropic sdk

* docs(anthropic_completion.md): add docs on passing end user param for cost tracking on anthropic sdk

* fix(litellm_logging.py): use standard logging payload if present in kwargs

prevent datadog logging error for pass through endpoints

* docs(bedrock.md): add rerank api usage example to docs

* bugfix/change dummy tool name format (#7053)

* fix viewing keys (#7042)

* ui new build

* build(model_prices_and_context_window.json): add bedrock region models to model cost map (#7044)

* bye (#6982)

* (fix) litellm router.aspeech  (#6962)

* doc Migrating Databases

* fix aspeech on router

* test_audio_speech_router

* test_audio_speech_router

* docs show supported providers on batches api doc

* change dummy tool name format

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* fix: fix linting errors

* test: update test

* fix(litellm_logging.py): fix pass through check

* fix(test_otel_logging.py): fix test

* fix(cost_calculator.py): update handling for cost per second

* fix(cost_calculator.py): fix cost check

* test: fix test

* (fix) adding public routes when using custom header  (#7045)

* get_api_key_from_custom_header

* add test_get_api_key_from_custom_header

* fix testing use 1 file for test user api key auth

* fix test user api key auth

* test_custom_api_key_header_name

* build: update ui build

---------

Co-authored-by: Doron Kopit <83537683+doronkopit5@users.noreply.github.com>
Co-authored-by: lloydchang <lloydchang@gmail.com>
Co-authored-by: hgulersen <haymigulersen@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
This commit is contained in:
Krish Dholakia 2024-12-06 14:29:53 -08:00 committed by GitHub
parent 56956fd6e7
commit 92a7e8e3e9
108 changed files with 561 additions and 356 deletions

View file

@ -283,142 +283,48 @@ def cost_per_token( # noqa: PLR0915
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
)
elif model in model_cost_ref:
print_verbose(f"Success: model={model} in model_cost_map")
print_verbose(
f"prompt_tokens={prompt_tokens}; completion_tokens={completion_tokens}"
else:
model_info = litellm.get_model_info(
model=model, custom_llm_provider=custom_llm_provider
)
if (
model_cost_ref[model].get("input_cost_per_token", None) is not None
and model_cost_ref[model].get("output_cost_per_token", None) is not None
):
if model_info["input_cost_per_token"] > 0:
## COST PER TOKEN ##
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
model_info["input_cost_per_token"] * prompt_tokens
)
elif (
model_cost_ref[model].get("output_cost_per_second", None) is not None
model_info.get("input_cost_per_second", None) is not None
and response_time_ms is not None
):
print_verbose(
f"For model={model} - output_cost_per_second: {model_cost_ref[model].get('output_cost_per_second')}; response time: {response_time_ms}"
)
## COST PER SECOND ##
prompt_tokens_cost_usd_dollar = 0
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_second"]
* response_time_ms
/ 1000
)
elif (
model_cost_ref[model].get("input_cost_per_second", None) is not None
and response_time_ms is not None
):
print_verbose(
f"For model={model} - input_cost_per_second: {model_cost_ref[model].get('input_cost_per_second')}; response time: {response_time_ms}"
f"For model={model} - input_cost_per_second: {model_info.get('input_cost_per_second')}; response time: {response_time_ms}"
)
## COST PER SECOND ##
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_second"] * response_time_ms / 1000
model_info["input_cost_per_second"] * response_time_ms / 1000 # type: ignore
)
completion_tokens_cost_usd_dollar = 0.0
if model_info["output_cost_per_token"] > 0:
completion_tokens_cost_usd_dollar = (
model_info["output_cost_per_token"] * completion_tokens
)
elif (
model_info.get("output_cost_per_second", None) is not None
and response_time_ms is not None
):
print_verbose(
f"For model={model} - output_cost_per_second: {model_info.get('output_cost_per_second')}; response time: {response_time_ms}"
)
## COST PER SECOND ##
completion_tokens_cost_usd_dollar = (
model_info["output_cost_per_second"] * response_time_ms / 1000 # type: ignore
)
print_verbose(
f"Returned custom cost for model={model} - prompt_tokens_cost_usd_dollar: {prompt_tokens_cost_usd_dollar}, completion_tokens_cost_usd_dollar: {completion_tokens_cost_usd_dollar}"
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:gpt-3.5-turbo" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:gpt-3.5-turbo:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-3.5-turbo"]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-3.5-turbo"]["output_cost_per_token"]
* completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:gpt-4-0613" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:gpt-4-0613:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-4-0613"]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-4-0613"]["output_cost_per_token"] * completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:gpt-4o-2024-05-13" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:gpt-4o-2024-05-13:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-4o-2024-05-13"]["input_cost_per_token"]
* prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:gpt-4o-2024-05-13"]["output_cost_per_token"]
* completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:davinci-002" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:davinci-002:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:davinci-002"]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:davinci-002"]["output_cost_per_token"]
* completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif "ft:babbage-002" in model:
print_verbose(f"Cost Tracking: {model} is an OpenAI FinteTuned LLM")
# fuzzy match ft:babbage-002:abcd-id-cool-litellm
prompt_tokens_cost_usd_dollar = (
model_cost_ref["ft:babbage-002"]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref["ft:babbage-002"]["output_cost_per_token"]
* completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif model in litellm.azure_llms:
verbose_logger.debug(f"Cost Tracking: {model} is an Azure LLM")
model = litellm.azure_llms[model]
verbose_logger.debug(
f"applying cost={model_cost_ref[model]['input_cost_per_token']} for prompt_tokens={prompt_tokens}"
)
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
verbose_logger.debug(
f"applying cost={model_cost_ref[model]['output_cost_per_token']} for completion_tokens={completion_tokens}"
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
elif model in litellm.azure_embedding_models:
verbose_logger.debug(f"Cost Tracking: {model} is an Azure Embedding Model")
model = litellm.azure_embedding_models[model]
prompt_tokens_cost_usd_dollar = (
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
)
completion_tokens_cost_usd_dollar = (
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
)
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
else:
# if model is not in model_prices_and_context_window.json. Raise an exception-let users know
error_str = f"Model not in model_prices_and_context_window.json. You passed model={model}, custom_llm_provider={custom_llm_provider}. Register pricing for model - https://docs.litellm.ai/docs/proxy/custom_pricing\n"
raise litellm.exceptions.NotFoundError( # type: ignore
message=error_str,
model=model,
llm_provider="",
)
def get_replicate_completion_pricing(completion_response: dict, total_time=0.0):