mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
Litellm dev 01 10 2025 p3 (#7682)
* feat(langfuse.py): log the used prompt when prompt management used * test: fix test * docs(self_serve.md): add doc on restricting personal key creation on ui * feat(s3.py): support s3 logging with team alias prefixes (if available) New preview feature * fix(main.py): remove old if block - simplify to just await if coroutine returned fixes lm_studio async embedding error * fix(langfuse.py): handle get prompt check
This commit is contained in:
parent
e54d23c919
commit
953c021aa7
11 changed files with 148 additions and 112 deletions
|
@ -3055,52 +3055,17 @@ async def aembedding(*args, **kwargs) -> EmbeddingResponse:
|
|||
model=model, api_base=kwargs.get("api_base", None)
|
||||
)
|
||||
|
||||
# Await normally
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
|
||||
response: Optional[EmbeddingResponse] = None
|
||||
if (
|
||||
custom_llm_provider == "openai"
|
||||
or custom_llm_provider == "azure"
|
||||
or custom_llm_provider == "xinference"
|
||||
or custom_llm_provider == "voyage"
|
||||
or custom_llm_provider == "mistral"
|
||||
or custom_llm_provider == "custom_openai"
|
||||
or custom_llm_provider == "triton"
|
||||
or custom_llm_provider == "anyscale"
|
||||
or custom_llm_provider == "openrouter"
|
||||
or custom_llm_provider == "deepinfra"
|
||||
or custom_llm_provider == "perplexity"
|
||||
or custom_llm_provider == "groq"
|
||||
or custom_llm_provider == "nvidia_nim"
|
||||
or custom_llm_provider == "cerebras"
|
||||
or custom_llm_provider == "sambanova"
|
||||
or custom_llm_provider == "ai21_chat"
|
||||
or custom_llm_provider == "volcengine"
|
||||
or custom_llm_provider == "deepseek"
|
||||
or custom_llm_provider == "fireworks_ai"
|
||||
or custom_llm_provider == "ollama"
|
||||
or custom_llm_provider == "vertex_ai"
|
||||
or custom_llm_provider == "gemini"
|
||||
or custom_llm_provider == "databricks"
|
||||
or custom_llm_provider == "watsonx"
|
||||
or custom_llm_provider == "cohere"
|
||||
or custom_llm_provider == "huggingface"
|
||||
or custom_llm_provider == "bedrock"
|
||||
or custom_llm_provider == "azure_ai"
|
||||
or custom_llm_provider == "together_ai"
|
||||
or custom_llm_provider == "openai_like"
|
||||
or custom_llm_provider == "jina_ai"
|
||||
or custom_llm_provider == "voyage"
|
||||
): # currently implemented aiohttp calls for just azure and openai, soon all.
|
||||
# Await normally
|
||||
init_response = await loop.run_in_executor(None, func_with_context)
|
||||
if isinstance(init_response, dict):
|
||||
response = EmbeddingResponse(**init_response)
|
||||
elif isinstance(init_response, EmbeddingResponse): ## CACHING SCENARIO
|
||||
response = init_response
|
||||
elif asyncio.iscoroutine(init_response):
|
||||
response = await init_response # type: ignore
|
||||
else:
|
||||
# Call the synchronous function using run_in_executor
|
||||
response = await loop.run_in_executor(None, func_with_context)
|
||||
if isinstance(init_response, dict):
|
||||
response = EmbeddingResponse(**init_response)
|
||||
elif isinstance(init_response, EmbeddingResponse): ## CACHING SCENARIO
|
||||
response = init_response
|
||||
elif asyncio.iscoroutine(init_response):
|
||||
response = await init_response # type: ignore
|
||||
|
||||
if (
|
||||
response is not None
|
||||
and isinstance(response, EmbeddingResponse)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue