feat: Added Missing Attributes For Arize & Phoenix Integration (#10043) (#10215)

* feat: Added Missing Attributes For Arize & Phoenix Integration

* chore: Added noqa for PLR0915 to suppress warning

* chore: Moved Contributor Test to Correct Location

* chore: Removed Redundant Fallback

Co-authored-by: Ali Saleh <saleh.a@turing.com>
This commit is contained in:
Ishaan Jaff 2025-04-22 21:34:51 -07:00 committed by GitHub
parent 5f98d4d7de
commit 96e31d205c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 540 additions and 156 deletions

View file

@ -45,6 +45,14 @@ class SpanAttributes:
"""
The name of the model being used.
"""
LLM_PROVIDER = "llm.provider"
"""
The provider of the model, such as OpenAI, Azure, Google, etc.
"""
LLM_SYSTEM = "llm.system"
"""
The AI product as identified by the client or server
"""
LLM_PROMPTS = "llm.prompts"
"""
Prompts provided to a completions API.
@ -65,15 +73,40 @@ class SpanAttributes:
"""
Number of tokens in the prompt.
"""
LLM_TOKEN_COUNT_PROMPT_DETAILS_CACHE_WRITE = "llm.token_count.prompt_details.cache_write"
"""
Number of tokens in the prompt that were written to cache.
"""
LLM_TOKEN_COUNT_PROMPT_DETAILS_CACHE_READ = "llm.token_count.prompt_details.cache_read"
"""
Number of tokens in the prompt that were read from cache.
"""
LLM_TOKEN_COUNT_PROMPT_DETAILS_AUDIO = "llm.token_count.prompt_details.audio"
"""
The number of audio input tokens presented in the prompt
"""
LLM_TOKEN_COUNT_COMPLETION = "llm.token_count.completion"
"""
Number of tokens in the completion.
"""
LLM_TOKEN_COUNT_COMPLETION_DETAILS_REASONING = "llm.token_count.completion_details.reasoning"
"""
Number of tokens used for reasoning steps in the completion.
"""
LLM_TOKEN_COUNT_COMPLETION_DETAILS_AUDIO = "llm.token_count.completion_details.audio"
"""
The number of audio input tokens generated by the model
"""
LLM_TOKEN_COUNT_TOTAL = "llm.token_count.total"
"""
Total number of tokens, including both prompt and completion.
"""
LLM_TOOLS = "llm.tools"
"""
List of tools that are advertised to the LLM to be able to call
"""
TOOL_NAME = "tool.name"
"""
Name of the tool being used.
@ -112,6 +145,19 @@ class SpanAttributes:
The id of the user
"""
PROMPT_VENDOR = "prompt.vendor"
"""
The vendor or origin of the prompt, e.g. a prompt library, a specialized service, etc.
"""
PROMPT_ID = "prompt.id"
"""
A vendor-specific id used to locate the prompt.
"""
PROMPT_URL = "prompt.url"
"""
A vendor-specific url used to locate the prompt.
"""
class MessageAttributes:
"""
@ -151,6 +197,10 @@ class MessageAttributes:
The JSON string representing the arguments passed to the function
during a function call.
"""
MESSAGE_TOOL_CALL_ID = "message.tool_call_id"
"""
The id of the tool call.
"""
class MessageContentAttributes:
@ -186,6 +236,25 @@ class ImageAttributes:
"""
class AudioAttributes:
"""
Attributes for audio
"""
AUDIO_URL = "audio.url"
"""
The url to an audio file
"""
AUDIO_MIME_TYPE = "audio.mime_type"
"""
The mime type of the audio file
"""
AUDIO_TRANSCRIPT = "audio.transcript"
"""
The transcript of the audio file
"""
class DocumentAttributes:
"""
Attributes for a document.
@ -257,6 +326,10 @@ class ToolCallAttributes:
Attributes for a tool call
"""
TOOL_CALL_ID = "tool_call.id"
"""
The id of the tool call.
"""
TOOL_CALL_FUNCTION_NAME = "tool_call.function.name"
"""
The name of function that is being called during a tool call.
@ -268,6 +341,18 @@ class ToolCallAttributes:
"""
class ToolAttributes:
"""
Attributes for a tools
"""
TOOL_JSON_SCHEMA = "tool.json_schema"
"""
The json schema of a tool input, It is RECOMMENDED that this be in the
OpenAI tool calling format: https://platform.openai.com/docs/assistants/tools
"""
class OpenInferenceSpanKindValues(Enum):
TOOL = "TOOL"
CHAIN = "CHAIN"
@ -284,3 +369,21 @@ class OpenInferenceSpanKindValues(Enum):
class OpenInferenceMimeTypeValues(Enum):
TEXT = "text/plain"
JSON = "application/json"
class OpenInferenceLLMSystemValues(Enum):
OPENAI = "openai"
ANTHROPIC = "anthropic"
COHERE = "cohere"
MISTRALAI = "mistralai"
VERTEXAI = "vertexai"
class OpenInferenceLLMProviderValues(Enum):
OPENAI = "openai"
ANTHROPIC = "anthropic"
COHERE = "cohere"
MISTRALAI = "mistralai"
GOOGLE = "google"
AZURE = "azure"
AWS = "aws"

View file

@ -1,3 +1,4 @@
import json
from typing import TYPE_CHECKING, Any, Optional, Union
from litellm._logging import verbose_logger
@ -12,36 +13,141 @@ else:
Span = Any
def set_attributes(span: Span, kwargs, response_obj):
def cast_as_primitive_value_type(value) -> Union[str, bool, int, float]:
"""
Converts a value to an OTEL-supported primitive for Arize/Phoenix observability.
"""
if value is None:
return ""
if isinstance(value, (str, bool, int, float)):
return value
try:
return str(value)
except Exception:
return ""
def safe_set_attribute(span: Span, key: str, value: Any):
"""
Sets a span attribute safely with OTEL-compliant primitive typing for Arize/Phoenix.
"""
primitive_value = cast_as_primitive_value_type(value)
span.set_attribute(key, primitive_value)
def set_attributes(span: Span, kwargs, response_obj): # noqa: PLR0915
"""
Populates span with OpenInference-compliant LLM attributes for Arize and Phoenix tracing.
"""
from litellm.integrations._types.open_inference import (
MessageAttributes,
OpenInferenceSpanKindValues,
SpanAttributes,
ToolCallAttributes,
)
try:
optional_params = kwargs.get("optional_params", {})
litellm_params = kwargs.get("litellm_params", {})
standard_logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object"
)
if standard_logging_payload is None:
raise ValueError("standard_logging_object not found in kwargs")
#############################################
############ LLM CALL METADATA ##############
#############################################
if standard_logging_payload and (
metadata := standard_logging_payload["metadata"]
):
span.set_attribute(SpanAttributes.METADATA, safe_dumps(metadata))
# Set custom metadata for observability and trace enrichment.
metadata = (
standard_logging_payload.get("metadata")
if standard_logging_payload
else None
)
if metadata is not None:
safe_set_attribute(span, SpanAttributes.METADATA, safe_dumps(metadata))
#############################################
########## LLM Request Attributes ###########
#############################################
# The name of the LLM a request is being made to
# The name of the LLM a request is being made to.
if kwargs.get("model"):
span.set_attribute(SpanAttributes.LLM_MODEL_NAME, kwargs.get("model"))
safe_set_attribute(
span,
SpanAttributes.LLM_MODEL_NAME,
kwargs.get("model"),
)
span.set_attribute(
# The LLM request type.
safe_set_attribute(
span,
"llm.request.type",
standard_logging_payload["call_type"],
)
# The Generative AI Provider: Azure, OpenAI, etc.
safe_set_attribute(
span,
SpanAttributes.LLM_PROVIDER,
litellm_params.get("custom_llm_provider", "Unknown"),
)
# The maximum number of tokens the LLM generates for a request.
if optional_params.get("max_tokens"):
safe_set_attribute(
span,
"llm.request.max_tokens",
optional_params.get("max_tokens"),
)
# The temperature setting for the LLM request.
if optional_params.get("temperature"):
safe_set_attribute(
span,
"llm.request.temperature",
optional_params.get("temperature"),
)
# The top_p sampling setting for the LLM request.
if optional_params.get("top_p"):
safe_set_attribute(
span,
"llm.request.top_p",
optional_params.get("top_p"),
)
# Indicates whether response is streamed.
safe_set_attribute(
span,
"llm.is_streaming",
str(optional_params.get("stream", False)),
)
# Logs the user ID if present.
if optional_params.get("user"):
safe_set_attribute(
span,
"llm.user",
optional_params.get("user"),
)
# The unique identifier for the completion.
if response_obj and response_obj.get("id"):
safe_set_attribute(span, "llm.response.id", response_obj.get("id"))
# The model used to generate the response.
if response_obj and response_obj.get("model"):
safe_set_attribute(
span,
"llm.response.model",
response_obj.get("model"),
)
# Required by OpenInference to mark span as LLM kind.
safe_set_attribute(
span,
SpanAttributes.OPENINFERENCE_SPAN_KIND,
OpenInferenceSpanKindValues.LLM.value,
)
@ -50,77 +156,132 @@ def set_attributes(span: Span, kwargs, response_obj):
# for /chat/completions
# https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
if messages:
span.set_attribute(
last_message = messages[-1]
safe_set_attribute(
span,
SpanAttributes.INPUT_VALUE,
messages[-1].get("content", ""), # get the last message for input
last_message.get("content", ""),
)
# LLM_INPUT_MESSAGES shows up under `input_messages` tab on the span page
# LLM_INPUT_MESSAGES shows up under `input_messages` tab on the span page.
for idx, msg in enumerate(messages):
# Set the role per message
span.set_attribute(
f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}.{MessageAttributes.MESSAGE_ROLE}",
msg["role"],
prefix = f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}"
# Set the role per message.
safe_set_attribute(
span, f"{prefix}.{MessageAttributes.MESSAGE_ROLE}", msg.get("role")
)
# Set the content per message
span.set_attribute(
f"{SpanAttributes.LLM_INPUT_MESSAGES}.{idx}.{MessageAttributes.MESSAGE_CONTENT}",
# Set the content per message.
safe_set_attribute(
span,
f"{prefix}.{MessageAttributes.MESSAGE_CONTENT}",
msg.get("content", ""),
)
if standard_logging_payload and (
model_params := standard_logging_payload["model_parameters"]
):
# Capture tools (function definitions) used in the LLM call.
tools = optional_params.get("tools")
if tools:
for idx, tool in enumerate(tools):
function = tool.get("function")
if not function:
continue
prefix = f"{SpanAttributes.LLM_TOOLS}.{idx}"
safe_set_attribute(
span, f"{prefix}.{SpanAttributes.TOOL_NAME}", function.get("name")
)
safe_set_attribute(
span,
f"{prefix}.{SpanAttributes.TOOL_DESCRIPTION}",
function.get("description"),
)
safe_set_attribute(
span,
f"{prefix}.{SpanAttributes.TOOL_PARAMETERS}",
json.dumps(function.get("parameters")),
)
# Capture tool calls made during function-calling LLM flows.
functions = optional_params.get("functions")
if functions:
for idx, function in enumerate(functions):
prefix = f"{MessageAttributes.MESSAGE_TOOL_CALLS}.{idx}"
safe_set_attribute(
span,
f"{prefix}.{ToolCallAttributes.TOOL_CALL_FUNCTION_NAME}",
function.get("name"),
)
# Capture invocation parameters and user ID if available.
model_params = (
standard_logging_payload.get("model_parameters")
if standard_logging_payload
else None
)
if model_params:
# The Generative AI Provider: Azure, OpenAI, etc.
span.set_attribute(
SpanAttributes.LLM_INVOCATION_PARAMETERS, safe_dumps(model_params)
safe_set_attribute(
span,
SpanAttributes.LLM_INVOCATION_PARAMETERS,
safe_dumps(model_params),
)
if model_params.get("user"):
user_id = model_params.get("user")
if user_id is not None:
span.set_attribute(SpanAttributes.USER_ID, user_id)
safe_set_attribute(span, SpanAttributes.USER_ID, user_id)
#############################################
########## LLM Response Attributes ##########
# https://docs.arize.com/arize/large-language-models/tracing/semantic-conventions
#############################################
if hasattr(response_obj, "get"):
for choice in response_obj.get("choices", []):
response_message = choice.get("message", {})
span.set_attribute(
SpanAttributes.OUTPUT_VALUE, response_message.get("content", "")
)
# This shows up under `output_messages` tab on the span page
# This code assumes a single response
span.set_attribute(
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}",
response_message.get("role"),
)
span.set_attribute(
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}",
# Captures response tokens, message, and content.
if hasattr(response_obj, "get"):
for idx, choice in enumerate(response_obj.get("choices", [])):
response_message = choice.get("message", {})
safe_set_attribute(
span,
SpanAttributes.OUTPUT_VALUE,
response_message.get("content", ""),
)
usage = response_obj.get("usage")
# This shows up under `output_messages` tab on the span page.
prefix = f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.{idx}"
safe_set_attribute(
span,
f"{prefix}.{MessageAttributes.MESSAGE_ROLE}",
response_message.get("role"),
)
safe_set_attribute(
span,
f"{prefix}.{MessageAttributes.MESSAGE_CONTENT}",
response_message.get("content", ""),
)
# Token usage info.
usage = response_obj and response_obj.get("usage")
if usage:
span.set_attribute(
safe_set_attribute(
span,
SpanAttributes.LLM_TOKEN_COUNT_TOTAL,
usage.get("total_tokens"),
)
# The number of tokens used in the LLM response (completion).
span.set_attribute(
safe_set_attribute(
span,
SpanAttributes.LLM_TOKEN_COUNT_COMPLETION,
usage.get("completion_tokens"),
)
# The number of tokens used in the LLM prompt.
span.set_attribute(
safe_set_attribute(
span,
SpanAttributes.LLM_TOKEN_COUNT_PROMPT,
usage.get("prompt_tokens"),
)
pass
except Exception as e:
verbose_logger.error(f"Error setting arize attributes: {e}")
verbose_logger.error(
f"[Arize/Phoenix] Failed to set OpenInference span attributes: {e}"
)
if hasattr(span, "record_exception"):
span.record_exception(e)

View file

@ -0,0 +1,231 @@
import json
import os
import sys
from typing import Optional
# Adds the grandparent directory to sys.path to allow importing project modules
sys.path.insert(0, os.path.abspath("../.."))
import asyncio
import litellm
import pytest
from litellm.integrations.arize.arize import ArizeLogger
from litellm.integrations.custom_logger import CustomLogger
from litellm.integrations._types.open_inference import (
SpanAttributes,
MessageAttributes,
ToolCallAttributes,
)
from litellm.types.utils import Choices, StandardCallbackDynamicParams
def test_arize_set_attributes():
"""
Test setting attributes for Arize, including all custom LLM attributes.
Ensures that the correct span attributes are being added during a request.
"""
from unittest.mock import MagicMock
from litellm.types.utils import ModelResponse
span = MagicMock() # Mocked tracing span to test attribute setting
# Construct kwargs to simulate a real LLM request scenario
kwargs = {
"model": "gpt-4o",
"messages": [{"role": "user", "content": "Basic Request Content"}],
"standard_logging_object": {
"model_parameters": {"user": "test_user"},
"metadata": {"key_1": "value_1", "key_2": None},
"call_type": "completion",
},
"optional_params": {
"max_tokens": "100",
"temperature": "1",
"top_p": "5",
"stream": False,
"user": "test_user",
"tools": [
{
"function": {
"name": "get_weather",
"description": "Fetches weather details.",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "City name",
}
},
"required": ["location"],
},
}
}
],
"functions": [{"name": "get_weather"}, {"name": "get_stock_price"}],
},
"litellm_params": {"custom_llm_provider": "openai"},
}
# Simulated LLM response object
response_obj = ModelResponse(
usage={"total_tokens": 100, "completion_tokens": 60, "prompt_tokens": 40},
choices=[
Choices(message={"role": "assistant", "content": "Basic Response Content"})
],
model="gpt-4o",
id="chatcmpl-ID",
)
# Apply attribute setting via ArizeLogger
ArizeLogger.set_arize_attributes(span, kwargs, response_obj)
# Validate that the expected number of attributes were set
assert span.set_attribute.call_count == 28
# Metadata attached to the span
span.set_attribute.assert_any_call(
SpanAttributes.METADATA, json.dumps({"key_1": "value_1", "key_2": None})
)
# Basic LLM information
span.set_attribute.assert_any_call(SpanAttributes.LLM_MODEL_NAME, "gpt-4o")
span.set_attribute.assert_any_call("llm.request.type", "completion")
span.set_attribute.assert_any_call(SpanAttributes.LLM_PROVIDER, "openai")
# LLM generation parameters
span.set_attribute.assert_any_call("llm.request.max_tokens", "100")
span.set_attribute.assert_any_call("llm.request.temperature", "1")
span.set_attribute.assert_any_call("llm.request.top_p", "5")
# Streaming and user info
span.set_attribute.assert_any_call("llm.is_streaming", "False")
span.set_attribute.assert_any_call("llm.user", "test_user")
# Response metadata
span.set_attribute.assert_any_call("llm.response.id", "chatcmpl-ID")
span.set_attribute.assert_any_call("llm.response.model", "gpt-4o")
span.set_attribute.assert_any_call(SpanAttributes.OPENINFERENCE_SPAN_KIND, "LLM")
# Request message content and metadata
span.set_attribute.assert_any_call(
SpanAttributes.INPUT_VALUE, "Basic Request Content"
)
span.set_attribute.assert_any_call(
f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}",
"user",
)
span.set_attribute.assert_any_call(
f"{SpanAttributes.LLM_INPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}",
"Basic Request Content",
)
# Tool call definitions and function names
span.set_attribute.assert_any_call(
f"{SpanAttributes.LLM_TOOLS}.0.{SpanAttributes.TOOL_NAME}", "get_weather"
)
span.set_attribute.assert_any_call(
f"{SpanAttributes.LLM_TOOLS}.0.{SpanAttributes.TOOL_DESCRIPTION}",
"Fetches weather details.",
)
span.set_attribute.assert_any_call(
f"{SpanAttributes.LLM_TOOLS}.0.{SpanAttributes.TOOL_PARAMETERS}",
json.dumps(
{
"type": "object",
"properties": {
"location": {"type": "string", "description": "City name"}
},
"required": ["location"],
}
),
)
# Tool calls captured from optional_params
span.set_attribute.assert_any_call(
f"{MessageAttributes.MESSAGE_TOOL_CALLS}.0.{ToolCallAttributes.TOOL_CALL_FUNCTION_NAME}",
"get_weather",
)
span.set_attribute.assert_any_call(
f"{MessageAttributes.MESSAGE_TOOL_CALLS}.1.{ToolCallAttributes.TOOL_CALL_FUNCTION_NAME}",
"get_stock_price",
)
# Invocation parameters
span.set_attribute.assert_any_call(
SpanAttributes.LLM_INVOCATION_PARAMETERS, '{"user": "test_user"}'
)
# User ID
span.set_attribute.assert_any_call(SpanAttributes.USER_ID, "test_user")
# Output message content
span.set_attribute.assert_any_call(
SpanAttributes.OUTPUT_VALUE, "Basic Response Content"
)
span.set_attribute.assert_any_call(
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}",
"assistant",
)
span.set_attribute.assert_any_call(
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}",
"Basic Response Content",
)
# Token counts
span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_TOTAL, 100)
span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_COMPLETION, 60)
span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_PROMPT, 40)
class TestArizeLogger(CustomLogger):
"""
Custom logger implementation to capture standard_callback_dynamic_params.
Used to verify that dynamic config keys are being passed to callbacks.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.standard_callback_dynamic_params: Optional[
StandardCallbackDynamicParams
] = None
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
# Capture dynamic params and print them for verification
print("logged kwargs", json.dumps(kwargs, indent=4, default=str))
self.standard_callback_dynamic_params = kwargs.get(
"standard_callback_dynamic_params"
)
@pytest.mark.asyncio
async def test_arize_dynamic_params():
"""
Test to ensure that dynamic Arize keys (API key and space key)
are received inside the callback logger at runtime.
"""
test_arize_logger = TestArizeLogger()
litellm.callbacks = [test_arize_logger]
# Perform a mocked async completion call to trigger logging
await litellm.acompletion(
model="gpt-4o",
messages=[{"role": "user", "content": "Basic Request Content"}],
mock_response="test",
arize_api_key="test_api_key_dynamic",
arize_space_key="test_space_key_dynamic",
)
# Allow for async propagation
await asyncio.sleep(2)
# Assert dynamic parameters were received in the callback
assert test_arize_logger.standard_callback_dynamic_params is not None
assert (
test_arize_logger.standard_callback_dynamic_params.get("arize_api_key")
== "test_api_key_dynamic"
)
assert (
test_arize_logger.standard_callback_dynamic_params.get("arize_space_key")
== "test_space_key_dynamic"
)

View file

@ -1,111 +0,0 @@
import os
import sys
import time
from unittest.mock import Mock, patch
import json
import opentelemetry.exporter.otlp.proto.grpc.trace_exporter
from typing import Optional
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system-path
from litellm.integrations._types.open_inference import SpanAttributes
from litellm.integrations.arize.arize import ArizeConfig, ArizeLogger
from litellm.integrations.custom_logger import CustomLogger
from litellm.main import completion
import litellm
from litellm.types.utils import Choices, StandardCallbackDynamicParams
import pytest
import asyncio
def test_arize_set_attributes():
"""
Test setting attributes for Arize
"""
from unittest.mock import MagicMock
from litellm.types.utils import ModelResponse
span = MagicMock()
kwargs = {
"role": "user",
"content": "simple arize test",
"model": "gpt-4o",
"messages": [{"role": "user", "content": "basic arize test"}],
"standard_logging_object": {
"model_parameters": {"user": "test_user"},
"metadata": {"key": "value", "key2": None},
},
}
response_obj = ModelResponse(
usage={"total_tokens": 100, "completion_tokens": 60, "prompt_tokens": 40},
choices=[Choices(message={"role": "assistant", "content": "response content"})],
)
ArizeLogger.set_arize_attributes(span, kwargs, response_obj)
assert span.set_attribute.call_count == 14
span.set_attribute.assert_any_call(
SpanAttributes.METADATA, json.dumps({"key": "value", "key2": None})
)
span.set_attribute.assert_any_call(SpanAttributes.LLM_MODEL_NAME, "gpt-4o")
span.set_attribute.assert_any_call(SpanAttributes.OPENINFERENCE_SPAN_KIND, "LLM")
span.set_attribute.assert_any_call(SpanAttributes.INPUT_VALUE, "basic arize test")
span.set_attribute.assert_any_call("llm.input_messages.0.message.role", "user")
span.set_attribute.assert_any_call(
"llm.input_messages.0.message.content", "basic arize test"
)
span.set_attribute.assert_any_call(
SpanAttributes.LLM_INVOCATION_PARAMETERS, '{"user": "test_user"}'
)
span.set_attribute.assert_any_call(SpanAttributes.USER_ID, "test_user")
span.set_attribute.assert_any_call(SpanAttributes.OUTPUT_VALUE, "response content")
span.set_attribute.assert_any_call(
"llm.output_messages.0.message.role", "assistant"
)
span.set_attribute.assert_any_call(
"llm.output_messages.0.message.content", "response content"
)
span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_TOTAL, 100)
span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_COMPLETION, 60)
span.set_attribute.assert_any_call(SpanAttributes.LLM_TOKEN_COUNT_PROMPT, 40)
class TestArizeLogger(CustomLogger):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.standard_callback_dynamic_params: Optional[
StandardCallbackDynamicParams
] = None
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print("logged kwargs", json.dumps(kwargs, indent=4, default=str))
self.standard_callback_dynamic_params = kwargs.get(
"standard_callback_dynamic_params"
)
@pytest.mark.asyncio
async def test_arize_dynamic_params():
"""verify arize ai dynamic params are recieved by a callback"""
test_arize_logger = TestArizeLogger()
litellm.callbacks = [test_arize_logger]
await litellm.acompletion(
model="gpt-4o",
messages=[{"role": "user", "content": "basic arize test"}],
mock_response="test",
arize_api_key="test_api_key_dynamic",
arize_space_key="test_space_key_dynamic",
)
await asyncio.sleep(2)
assert test_arize_logger.standard_callback_dynamic_params is not None
assert (
test_arize_logger.standard_callback_dynamic_params.get("arize_api_key")
== "test_api_key_dynamic"
)
assert (
test_arize_logger.standard_callback_dynamic_params.get("arize_space_key")
== "test_space_key_dynamic"
)