Merge branch 'main' into litellm_embedding_caching_updates

This commit is contained in:
Krish Dholakia 2024-02-03 18:08:47 -08:00 committed by GitHub
commit 9ab59045a3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
236 changed files with 24483 additions and 2014 deletions

View file

@ -15,7 +15,7 @@ import dotenv, traceback, random, asyncio, time, contextvars
from copy import deepcopy
import httpx
import litellm
from ._logging import verbose_logger
from litellm import ( # type: ignore
client,
exception_type,
@ -83,6 +83,7 @@ from litellm.utils import (
TextCompletionResponse,
TextChoices,
EmbeddingResponse,
ImageResponse,
read_config_args,
Choices,
Message,
@ -275,14 +276,10 @@ async def acompletion(
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context) # type: ignore
# if kwargs.get("stream", False): # return an async generator
# return _async_streaming(
# response=response,
# model=model,
# custom_llm_provider=custom_llm_provider,
# args=args,
# )
# else:
if isinstance(response, CustomStreamWrapper):
response.set_logging_event_loop(
loop=loop
) # sets the logging event loop if the user does sync streaming (e.g. on proxy for sagemaker calls)
return response
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
@ -345,6 +342,18 @@ def mock_completion(
model_response["choices"][0]["message"]["content"] = mock_response
model_response["created"] = int(time.time())
model_response["model"] = model
model_response.usage = Usage(
prompt_tokens=10, completion_tokens=20, total_tokens=30
)
try:
_, custom_llm_provider, _, _ = litellm.utils.get_llm_provider(model=model)
model_response._hidden_params["custom_llm_provider"] = custom_llm_provider
except:
# dont let setting a hidden param block a mock_respose
pass
return model_response
except:
@ -444,9 +453,12 @@ def completion(
num_retries = kwargs.get("num_retries", None) ## deprecated
max_retries = kwargs.get("max_retries", None)
context_window_fallback_dict = kwargs.get("context_window_fallback_dict", None)
organization = kwargs.get("organization", None)
### CUSTOM MODEL COST ###
input_cost_per_token = kwargs.get("input_cost_per_token", None)
output_cost_per_token = kwargs.get("output_cost_per_token", None)
input_cost_per_second = kwargs.get("input_cost_per_second", None)
output_cost_per_second = kwargs.get("output_cost_per_second", None)
### CUSTOM PROMPT TEMPLATE ###
initial_prompt_value = kwargs.get("initial_prompt_value", None)
roles = kwargs.get("roles", None)
@ -524,6 +536,8 @@ def completion(
"tpm",
"input_cost_per_token",
"output_cost_per_token",
"input_cost_per_second",
"output_cost_per_second",
"hf_model_name",
"model_info",
"proxy_server_request",
@ -536,10 +550,6 @@ def completion(
non_default_params = {
k: v for k, v in kwargs.items() if k not in default_params
} # model-specific params - pass them straight to the model/provider
if mock_response:
return mock_completion(
model, messages, stream=stream, mock_response=mock_response
)
if timeout is None:
timeout = (
kwargs.get("request_timeout", None) or 600
@ -577,15 +587,45 @@ def completion(
api_base=api_base,
api_key=api_key,
)
if model_response is not None and hasattr(model_response, "_hidden_params"):
model_response._hidden_params["custom_llm_provider"] = custom_llm_provider
model_response._hidden_params["region_name"] = kwargs.get(
"aws_region_name", None
) # support region-based pricing for bedrock
### REGISTER CUSTOM MODEL PRICING -- IF GIVEN ###
if input_cost_per_token is not None and output_cost_per_token is not None:
print_verbose(f"Registering model={model} in model cost map")
litellm.register_model(
{
f"{custom_llm_provider}/{model}": {
"input_cost_per_token": input_cost_per_token,
"output_cost_per_token": output_cost_per_token,
"litellm_provider": custom_llm_provider,
},
model: {
"input_cost_per_token": input_cost_per_token,
"output_cost_per_token": output_cost_per_token,
"litellm_provider": custom_llm_provider,
}
},
}
)
elif (
input_cost_per_second is not None
): # time based pricing just needs cost in place
output_cost_per_second = output_cost_per_second or 0.0
litellm.register_model(
{
f"{custom_llm_provider}/{model}": {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
},
model: {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
},
}
)
### BUILD CUSTOM PROMPT TEMPLATE -- IF GIVEN ###
@ -674,6 +714,10 @@ def completion(
optional_params=optional_params,
litellm_params=litellm_params,
)
if mock_response:
return mock_completion(
model, messages, stream=stream, mock_response=mock_response
)
if custom_llm_provider == "azure":
# azure configs
api_type = get_secret("AZURE_API_TYPE") or "azure"
@ -692,9 +736,9 @@ def completion(
or get_secret("AZURE_API_KEY")
)
azure_ad_token = optional_params.pop("azure_ad_token", None) or get_secret(
"AZURE_AD_TOKEN"
)
azure_ad_token = optional_params.get("extra_body", {}).pop(
"azure_ad_token", None
) or get_secret("AZURE_AD_TOKEN")
headers = headers or litellm.headers
@ -758,7 +802,8 @@ def completion(
or "https://api.openai.com/v1"
)
openai.organization = (
litellm.organization
organization
or litellm.organization
or get_secret("OPENAI_ORGANIZATION")
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
)
@ -798,6 +843,7 @@ def completion(
timeout=timeout,
custom_prompt_dict=custom_prompt_dict,
client=client, # pass AsyncOpenAI, OpenAI client
organization=organization,
)
except Exception as e:
## LOGGING - log the original exception returned
@ -967,6 +1013,7 @@ def completion(
encoding=encoding, # for calculating input/output tokens
api_key=api_key,
logging_obj=logging,
headers=headers,
)
if "stream" in optional_params and optional_params["stream"] == True:
# don't try to access stream object,
@ -1376,11 +1423,29 @@ def completion(
acompletion=acompletion,
custom_prompt_dict=custom_prompt_dict,
)
if (
"stream" in optional_params
and optional_params["stream"] == True
and acompletion == False
):
response = CustomStreamWrapper(
iter(model_response),
model,
custom_llm_provider="gemini",
logging_obj=logging,
)
return response
response = model_response
elif custom_llm_provider == "vertex_ai":
vertex_ai_project = litellm.vertex_project or get_secret("VERTEXAI_PROJECT")
vertex_ai_location = litellm.vertex_location or get_secret(
"VERTEXAI_LOCATION"
vertex_ai_project = (
optional_params.pop("vertex_ai_project", None)
or litellm.vertex_project
or get_secret("VERTEXAI_PROJECT")
)
vertex_ai_location = (
optional_params.pop("vertex_ai_location", None)
or litellm.vertex_location
or get_secret("VERTEXAI_LOCATION")
)
model_response = vertex_ai.completion(
@ -1471,19 +1536,22 @@ def completion(
if (
"stream" in optional_params and optional_params["stream"] == True
): ## [BETA]
# sagemaker does not support streaming as of now so we're faking streaming:
# https://discuss.huggingface.co/t/streaming-output-text-when-deploying-on-sagemaker/39611
# "SageMaker is currently not supporting streaming responses."
# fake streaming for sagemaker
print_verbose(f"ENTERS SAGEMAKER CUSTOMSTREAMWRAPPER")
resp_string = model_response["choices"][0]["message"]["content"]
from .llms.sagemaker import TokenIterator
tokenIterator = TokenIterator(model_response)
response = CustomStreamWrapper(
resp_string,
model,
completion_stream=tokenIterator,
model=model,
custom_llm_provider="sagemaker",
logging_obj=logging,
)
## LOGGING
logging.post_call(
input=messages,
api_key=None,
original_response=response,
)
return response
## RESPONSE OBJECT
@ -2146,6 +2214,7 @@ async def aembedding(*args, **kwargs):
or custom_llm_provider == "deepinfra"
or custom_llm_provider == "perplexity"
or custom_llm_provider == "ollama"
or custom_llm_provider == "vertex_ai"
): # currently implemented aiohttp calls for just azure and openai, soon all.
# Await normally
init_response = await loop.run_in_executor(None, func_with_context)
@ -2158,6 +2227,8 @@ async def aembedding(*args, **kwargs):
else:
# Call the synchronous function using run_in_executor
response = await loop.run_in_executor(None, func_with_context)
if response is not None and hasattr(response, "_hidden_params"):
response._hidden_params["custom_llm_provider"] = custom_llm_provider
return response
except Exception as e:
custom_llm_provider = custom_llm_provider or "openai"
@ -2174,6 +2245,7 @@ def embedding(
model,
input=[],
# Optional params
dimensions: Optional[int] = None,
timeout=600, # default to 10 minutes
# set api_base, api_version, api_key
api_base: Optional[str] = None,
@ -2194,6 +2266,7 @@ def embedding(
Parameters:
- model: The embedding model to use.
- input: The input for which embeddings are to be generated.
- dimensions: The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
- timeout: The timeout value for the API call, default 10 mins
- litellm_call_id: The call ID for litellm logging.
- litellm_logging_obj: The litellm logging object.
@ -2220,8 +2293,14 @@ def embedding(
encoding_format = kwargs.get("encoding_format", None)
proxy_server_request = kwargs.get("proxy_server_request", None)
aembedding = kwargs.get("aembedding", None)
### CUSTOM MODEL COST ###
input_cost_per_token = kwargs.get("input_cost_per_token", None)
output_cost_per_token = kwargs.get("output_cost_per_token", None)
input_cost_per_second = kwargs.get("input_cost_per_second", None)
output_cost_per_second = kwargs.get("output_cost_per_second", None)
openai_params = [
"user",
"dimensions",
"request_timeout",
"api_base",
"api_version",
@ -2268,6 +2347,8 @@ def embedding(
"tpm",
"input_cost_per_token",
"output_cost_per_token",
"input_cost_per_second",
"output_cost_per_second",
"hf_model_name",
"proxy_server_request",
"model_info",
@ -2288,11 +2369,35 @@ def embedding(
api_key=api_key,
)
optional_params = get_optional_params_embeddings(
model=model,
user=user,
dimensions=dimensions,
encoding_format=encoding_format,
custom_llm_provider=custom_llm_provider,
**non_default_params,
)
### REGISTER CUSTOM MODEL PRICING -- IF GIVEN ###
if input_cost_per_token is not None and output_cost_per_token is not None:
litellm.register_model(
{
model: {
"input_cost_per_token": input_cost_per_token,
"output_cost_per_token": output_cost_per_token,
"litellm_provider": custom_llm_provider,
}
}
)
if input_cost_per_second is not None: # time based pricing just needs cost in place
output_cost_per_second = output_cost_per_second or 0.0
litellm.register_model(
{
model: {
"input_cost_per_second": input_cost_per_second,
"output_cost_per_second": output_cost_per_second,
"litellm_provider": custom_llm_provider,
}
}
)
try:
response = None
logging = litellm_logging_obj
@ -2385,7 +2490,7 @@ def embedding(
client=client,
aembedding=aembedding,
)
elif model in litellm.cohere_embedding_models:
elif custom_llm_provider == "cohere":
cohere_key = (
api_key
or litellm.cohere_key
@ -2427,6 +2532,29 @@ def embedding(
optional_params=optional_params,
model_response=EmbeddingResponse(),
)
elif custom_llm_provider == "vertex_ai":
vertex_ai_project = (
optional_params.pop("vertex_ai_project", None)
or litellm.vertex_project
or get_secret("VERTEXAI_PROJECT")
)
vertex_ai_location = (
optional_params.pop("vertex_ai_location", None)
or litellm.vertex_location
or get_secret("VERTEXAI_LOCATION")
)
response = vertex_ai.embedding(
model=model,
input=input,
encoding=encoding,
logging_obj=logging,
optional_params=optional_params,
model_response=EmbeddingResponse(),
vertex_project=vertex_ai_project,
vertex_location=vertex_ai_location,
aembedding=aembedding,
)
elif custom_llm_provider == "oobabooga":
response = oobabooga.embedding(
model=model,
@ -2513,6 +2641,8 @@ def embedding(
else:
args = locals()
raise ValueError(f"No valid embedding model args passed in - {args}")
if response is not None and hasattr(response, "_hidden_params"):
response._hidden_params["custom_llm_provider"] = custom_llm_provider
return response
except Exception as e:
## LOGGING
@ -2523,9 +2653,7 @@ def embedding(
)
## Map to OpenAI Exception
raise exception_type(
model=model,
original_exception=e,
custom_llm_provider="azure" if azure == True else None,
model=model, original_exception=e, custom_llm_provider=custom_llm_provider
)
@ -2914,6 +3042,7 @@ def image_generation(
else:
model = "dall-e-2"
custom_llm_provider = "openai" # default to dall-e-2 on openai
model_response._hidden_params["model"] = model
openai_params = [
"user",
"request_timeout",
@ -2987,7 +3116,7 @@ def image_generation(
custom_llm_provider=custom_llm_provider,
**non_default_params,
)
logging = litellm_logging_obj
logging: Logging = litellm_logging_obj
logging.update_environment_variables(
model=model,
user=user,
@ -3051,7 +3180,18 @@ def image_generation(
model_response=model_response,
aimg_generation=aimg_generation,
)
elif custom_llm_provider == "bedrock":
if model is None:
raise Exception("Model needs to be set for bedrock")
model_response = bedrock.image_generation(
model=model,
prompt=prompt,
timeout=timeout,
logging_obj=litellm_logging_obj,
optional_params=optional_params,
model_response=model_response,
aimg_generation=aimg_generation,
)
return model_response
except Exception as e:
## Map to OpenAI Exception
@ -3068,7 +3208,9 @@ def image_generation(
async def ahealth_check(
model_params: dict,
mode: Optional[Literal["completion", "embedding", "image_generation"]] = None,
mode: Optional[
Literal["completion", "embedding", "image_generation", "chat"]
] = None,
prompt: Optional[str] = None,
input: Optional[List] = None,
default_timeout: float = 6000,
@ -3085,8 +3227,11 @@ async def ahealth_check(
if model is None:
raise Exception("model not set")
if model in litellm.model_cost and mode is None:
mode = litellm.model_cost[model]["mode"]
model, custom_llm_provider, _, _ = get_llm_provider(model=model)
mode = mode or "completion" # default to completion calls
mode = mode or "chat" # default to chat completion calls
if custom_llm_provider == "azure":
api_key = (
@ -3126,8 +3271,12 @@ async def ahealth_check(
prompt=prompt,
input=input,
)
elif custom_llm_provider == "openai":
elif (
custom_llm_provider == "openai"
or custom_llm_provider == "text-completion-openai"
):
api_key = model_params.get("api_key") or get_secret("OPENAI_API_KEY")
organization = model_params.get("organization")
timeout = (
model_params.get("timeout")
@ -3145,8 +3294,12 @@ async def ahealth_check(
mode=mode,
prompt=prompt,
input=input,
organization=organization,
)
else:
model_params["cache"] = {
"no-cache": True
} # don't used cached responses for making health check calls
if mode == "embedding":
model_params.pop("messages", None)
model_params["input"] = input
@ -3169,6 +3322,7 @@ async def ahealth_check(
## Set verbose to true -> ```litellm.set_verbose = True```
def print_verbose(print_statement):
try:
verbose_logger.debug(print_statement)
if litellm.set_verbose:
print(print_statement) # noqa
except:
@ -3256,7 +3410,23 @@ def stream_chunk_builder_text_completion(chunks: list, messages: Optional[List]
return response
def stream_chunk_builder(chunks: list, messages: Optional[list] = None):
def stream_chunk_builder(
chunks: list, messages: Optional[list] = None, start_time=None, end_time=None
):
model_response = litellm.ModelResponse()
### SORT CHUNKS BASED ON CREATED ORDER ##
print_verbose("Goes into checking if chunk has hiddden created at param")
if chunks[0]._hidden_params.get("created_at", None):
print_verbose("Chunks have a created at hidden param")
# Sort chunks based on created_at in ascending order
chunks = sorted(
chunks, key=lambda x: x._hidden_params.get("created_at", float("inf"))
)
print_verbose("Chunks sorted")
# set hidden params from chunk to model_response
if model_response is not None and hasattr(model_response, "_hidden_params"):
model_response._hidden_params = chunks[0].get("_hidden_params", {})
id = chunks[0]["id"]
object = chunks[0]["object"]
created = chunks[0]["created"]
@ -3427,5 +3597,8 @@ def stream_chunk_builder(chunks: list, messages: Optional[list] = None):
response["usage"]["prompt_tokens"] + response["usage"]["completion_tokens"]
)
return convert_to_model_response_object(
response_object=response, model_response_object=litellm.ModelResponse()
response_object=response,
model_response_object=model_response,
start_time=start_time,
end_time=end_time,
)